Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

950=x\times 2\left(-2x+13\right)
Variable x cannot be equal to \frac{13}{2} since division by zero is not defined. Multiply both sides of the equation by 2\left(-2x+13\right).
950=-4x^{2}+13x\times 2
Use the distributive property to multiply x\times 2 by -2x+13.
950=-4x^{2}+26x
Multiply 13 and 2 to get 26.
-4x^{2}+26x=950
Swap sides so that all variable terms are on the left hand side.
-4x^{2}+26x-950=0
Subtract 950 from both sides.
x=\frac{-26±\sqrt{26^{2}-4\left(-4\right)\left(-950\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 26 for b, and -950 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-26±\sqrt{676-4\left(-4\right)\left(-950\right)}}{2\left(-4\right)}
Square 26.
x=\frac{-26±\sqrt{676+16\left(-950\right)}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-26±\sqrt{676-15200}}{2\left(-4\right)}
Multiply 16 times -950.
x=\frac{-26±\sqrt{-14524}}{2\left(-4\right)}
Add 676 to -15200.
x=\frac{-26±2\sqrt{3631}i}{2\left(-4\right)}
Take the square root of -14524.
x=\frac{-26±2\sqrt{3631}i}{-8}
Multiply 2 times -4.
x=\frac{-26+2\sqrt{3631}i}{-8}
Now solve the equation x=\frac{-26±2\sqrt{3631}i}{-8} when ± is plus. Add -26 to 2i\sqrt{3631}.
x=\frac{-\sqrt{3631}i+13}{4}
Divide -26+2i\sqrt{3631} by -8.
x=\frac{-2\sqrt{3631}i-26}{-8}
Now solve the equation x=\frac{-26±2\sqrt{3631}i}{-8} when ± is minus. Subtract 2i\sqrt{3631} from -26.
x=\frac{13+\sqrt{3631}i}{4}
Divide -26-2i\sqrt{3631} by -8.
x=\frac{-\sqrt{3631}i+13}{4} x=\frac{13+\sqrt{3631}i}{4}
The equation is now solved.
950=x\times 2\left(-2x+13\right)
Variable x cannot be equal to \frac{13}{2} since division by zero is not defined. Multiply both sides of the equation by 2\left(-2x+13\right).
950=-4x^{2}+13x\times 2
Use the distributive property to multiply x\times 2 by -2x+13.
950=-4x^{2}+26x
Multiply 13 and 2 to get 26.
-4x^{2}+26x=950
Swap sides so that all variable terms are on the left hand side.
\frac{-4x^{2}+26x}{-4}=\frac{950}{-4}
Divide both sides by -4.
x^{2}+\frac{26}{-4}x=\frac{950}{-4}
Dividing by -4 undoes the multiplication by -4.
x^{2}-\frac{13}{2}x=\frac{950}{-4}
Reduce the fraction \frac{26}{-4} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{13}{2}x=-\frac{475}{2}
Reduce the fraction \frac{950}{-4} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{13}{2}x+\left(-\frac{13}{4}\right)^{2}=-\frac{475}{2}+\left(-\frac{13}{4}\right)^{2}
Divide -\frac{13}{2}, the coefficient of the x term, by 2 to get -\frac{13}{4}. Then add the square of -\frac{13}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{13}{2}x+\frac{169}{16}=-\frac{475}{2}+\frac{169}{16}
Square -\frac{13}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{13}{2}x+\frac{169}{16}=-\frac{3631}{16}
Add -\frac{475}{2} to \frac{169}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{13}{4}\right)^{2}=-\frac{3631}{16}
Factor x^{2}-\frac{13}{2}x+\frac{169}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{13}{4}\right)^{2}}=\sqrt{-\frac{3631}{16}}
Take the square root of both sides of the equation.
x-\frac{13}{4}=\frac{\sqrt{3631}i}{4} x-\frac{13}{4}=-\frac{\sqrt{3631}i}{4}
Simplify.
x=\frac{13+\sqrt{3631}i}{4} x=\frac{-\sqrt{3631}i+13}{4}
Add \frac{13}{4} to both sides of the equation.