Evaluate
\frac{92}{63}\approx 1.46031746
Factor
\frac{2 ^ {2} \cdot 23}{3 ^ {2} \cdot 7} = 1\frac{29}{63} = 1.4603174603174602
Share
Copied to clipboard
\begin{array}{l}\phantom{63)}\phantom{1}\\63\overline{)92}\\\end{array}
Use the 1^{st} digit 9 from dividend 92
\begin{array}{l}\phantom{63)}0\phantom{2}\\63\overline{)92}\\\end{array}
Since 9 is less than 63, use the next digit 2 from dividend 92 and add 0 to the quotient
\begin{array}{l}\phantom{63)}0\phantom{3}\\63\overline{)92}\\\end{array}
Use the 2^{nd} digit 2 from dividend 92
\begin{array}{l}\phantom{63)}01\phantom{4}\\63\overline{)92}\\\phantom{63)}\underline{\phantom{}63\phantom{}}\\\phantom{63)}29\\\end{array}
Find closest multiple of 63 to 92. We see that 1 \times 63 = 63 is the nearest. Now subtract 63 from 92 to get reminder 29. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }29
Since 29 is less than 63, stop the division. The reminder is 29. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}