Evaluate
\frac{91577}{58}\approx 1578.913793103
Factor
\frac{91577}{2 \cdot 29} = 1578\frac{53}{58} = 1578.9137931034484
Share
Copied to clipboard
\begin{array}{l}\phantom{58)}\phantom{1}\\58\overline{)91577}\\\end{array}
Use the 1^{st} digit 9 from dividend 91577
\begin{array}{l}\phantom{58)}0\phantom{2}\\58\overline{)91577}\\\end{array}
Since 9 is less than 58, use the next digit 1 from dividend 91577 and add 0 to the quotient
\begin{array}{l}\phantom{58)}0\phantom{3}\\58\overline{)91577}\\\end{array}
Use the 2^{nd} digit 1 from dividend 91577
\begin{array}{l}\phantom{58)}01\phantom{4}\\58\overline{)91577}\\\phantom{58)}\underline{\phantom{}58\phantom{999}}\\\phantom{58)}33\\\end{array}
Find closest multiple of 58 to 91. We see that 1 \times 58 = 58 is the nearest. Now subtract 58 from 91 to get reminder 33. Add 1 to quotient.
\begin{array}{l}\phantom{58)}01\phantom{5}\\58\overline{)91577}\\\phantom{58)}\underline{\phantom{}58\phantom{999}}\\\phantom{58)}335\\\end{array}
Use the 3^{rd} digit 5 from dividend 91577
\begin{array}{l}\phantom{58)}015\phantom{6}\\58\overline{)91577}\\\phantom{58)}\underline{\phantom{}58\phantom{999}}\\\phantom{58)}335\\\phantom{58)}\underline{\phantom{}290\phantom{99}}\\\phantom{58)9}45\\\end{array}
Find closest multiple of 58 to 335. We see that 5 \times 58 = 290 is the nearest. Now subtract 290 from 335 to get reminder 45. Add 5 to quotient.
\begin{array}{l}\phantom{58)}015\phantom{7}\\58\overline{)91577}\\\phantom{58)}\underline{\phantom{}58\phantom{999}}\\\phantom{58)}335\\\phantom{58)}\underline{\phantom{}290\phantom{99}}\\\phantom{58)9}457\\\end{array}
Use the 4^{th} digit 7 from dividend 91577
\begin{array}{l}\phantom{58)}0157\phantom{8}\\58\overline{)91577}\\\phantom{58)}\underline{\phantom{}58\phantom{999}}\\\phantom{58)}335\\\phantom{58)}\underline{\phantom{}290\phantom{99}}\\\phantom{58)9}457\\\phantom{58)}\underline{\phantom{9}406\phantom{9}}\\\phantom{58)99}51\\\end{array}
Find closest multiple of 58 to 457. We see that 7 \times 58 = 406 is the nearest. Now subtract 406 from 457 to get reminder 51. Add 7 to quotient.
\begin{array}{l}\phantom{58)}0157\phantom{9}\\58\overline{)91577}\\\phantom{58)}\underline{\phantom{}58\phantom{999}}\\\phantom{58)}335\\\phantom{58)}\underline{\phantom{}290\phantom{99}}\\\phantom{58)9}457\\\phantom{58)}\underline{\phantom{9}406\phantom{9}}\\\phantom{58)99}517\\\end{array}
Use the 5^{th} digit 7 from dividend 91577
\begin{array}{l}\phantom{58)}01578\phantom{10}\\58\overline{)91577}\\\phantom{58)}\underline{\phantom{}58\phantom{999}}\\\phantom{58)}335\\\phantom{58)}\underline{\phantom{}290\phantom{99}}\\\phantom{58)9}457\\\phantom{58)}\underline{\phantom{9}406\phantom{9}}\\\phantom{58)99}517\\\phantom{58)}\underline{\phantom{99}464\phantom{}}\\\phantom{58)999}53\\\end{array}
Find closest multiple of 58 to 517. We see that 8 \times 58 = 464 is the nearest. Now subtract 464 from 517 to get reminder 53. Add 8 to quotient.
\text{Quotient: }1578 \text{Reminder: }53
Since 53 is less than 58, stop the division. The reminder is 53. The topmost line 01578 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1578.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}