Evaluate
1
Factor
1
Share
Copied to clipboard
\frac{91}{228}+\frac{105}{228}+\frac{5}{38}+\frac{1}{114}
Least common multiple of 228 and 76 is 228. Convert \frac{91}{228} and \frac{35}{76} to fractions with denominator 228.
\frac{91+105}{228}+\frac{5}{38}+\frac{1}{114}
Since \frac{91}{228} and \frac{105}{228} have the same denominator, add them by adding their numerators.
\frac{196}{228}+\frac{5}{38}+\frac{1}{114}
Add 91 and 105 to get 196.
\frac{49}{57}+\frac{5}{38}+\frac{1}{114}
Reduce the fraction \frac{196}{228} to lowest terms by extracting and canceling out 4.
\frac{98}{114}+\frac{15}{114}+\frac{1}{114}
Least common multiple of 57 and 38 is 114. Convert \frac{49}{57} and \frac{5}{38} to fractions with denominator 114.
\frac{98+15}{114}+\frac{1}{114}
Since \frac{98}{114} and \frac{15}{114} have the same denominator, add them by adding their numerators.
\frac{113}{114}+\frac{1}{114}
Add 98 and 15 to get 113.
\frac{113+1}{114}
Since \frac{113}{114} and \frac{1}{114} have the same denominator, add them by adding their numerators.
\frac{114}{114}
Add 113 and 1 to get 114.
1
Divide 114 by 114 to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}