Evaluate
\frac{9}{17}-\frac{15}{17}i\approx 0.529411765-0.882352941i
Real Part
\frac{9}{17} = 0.5294117647058824
Share
Copied to clipboard
\frac{\left(90-30i\right)\left(70-60i\right)}{\left(70+60i\right)\left(70-60i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 70-60i.
\frac{\left(90-30i\right)\left(70-60i\right)}{70^{2}-60^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(90-30i\right)\left(70-60i\right)}{8500}
By definition, i^{2} is -1. Calculate the denominator.
\frac{90\times 70+90\times \left(-60i\right)-30i\times 70-30\left(-60\right)i^{2}}{8500}
Multiply complex numbers 90-30i and 70-60i like you multiply binomials.
\frac{90\times 70+90\times \left(-60i\right)-30i\times 70-30\left(-60\right)\left(-1\right)}{8500}
By definition, i^{2} is -1.
\frac{6300-5400i-2100i-1800}{8500}
Do the multiplications in 90\times 70+90\times \left(-60i\right)-30i\times 70-30\left(-60\right)\left(-1\right).
\frac{6300-1800+\left(-5400-2100\right)i}{8500}
Combine the real and imaginary parts in 6300-5400i-2100i-1800.
\frac{4500-7500i}{8500}
Do the additions in 6300-1800+\left(-5400-2100\right)i.
\frac{9}{17}-\frac{15}{17}i
Divide 4500-7500i by 8500 to get \frac{9}{17}-\frac{15}{17}i.
Re(\frac{\left(90-30i\right)\left(70-60i\right)}{\left(70+60i\right)\left(70-60i\right)})
Multiply both numerator and denominator of \frac{90-30i}{70+60i} by the complex conjugate of the denominator, 70-60i.
Re(\frac{\left(90-30i\right)\left(70-60i\right)}{70^{2}-60^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(90-30i\right)\left(70-60i\right)}{8500})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{90\times 70+90\times \left(-60i\right)-30i\times 70-30\left(-60\right)i^{2}}{8500})
Multiply complex numbers 90-30i and 70-60i like you multiply binomials.
Re(\frac{90\times 70+90\times \left(-60i\right)-30i\times 70-30\left(-60\right)\left(-1\right)}{8500})
By definition, i^{2} is -1.
Re(\frac{6300-5400i-2100i-1800}{8500})
Do the multiplications in 90\times 70+90\times \left(-60i\right)-30i\times 70-30\left(-60\right)\left(-1\right).
Re(\frac{6300-1800+\left(-5400-2100\right)i}{8500})
Combine the real and imaginary parts in 6300-5400i-2100i-1800.
Re(\frac{4500-7500i}{8500})
Do the additions in 6300-1800+\left(-5400-2100\right)i.
Re(\frac{9}{17}-\frac{15}{17}i)
Divide 4500-7500i by 8500 to get \frac{9}{17}-\frac{15}{17}i.
\frac{9}{17}
The real part of \frac{9}{17}-\frac{15}{17}i is \frac{9}{17}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}