Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(90-30i\right)\left(70-60i\right)}{\left(70+60i\right)\left(70-60i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 70-60i.
\frac{\left(90-30i\right)\left(70-60i\right)}{70^{2}-60^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(90-30i\right)\left(70-60i\right)}{8500}
By definition, i^{2} is -1. Calculate the denominator.
\frac{90\times 70+90\times \left(-60i\right)-30i\times 70-30\left(-60\right)i^{2}}{8500}
Multiply complex numbers 90-30i and 70-60i like you multiply binomials.
\frac{90\times 70+90\times \left(-60i\right)-30i\times 70-30\left(-60\right)\left(-1\right)}{8500}
By definition, i^{2} is -1.
\frac{6300-5400i-2100i-1800}{8500}
Do the multiplications in 90\times 70+90\times \left(-60i\right)-30i\times 70-30\left(-60\right)\left(-1\right).
\frac{6300-1800+\left(-5400-2100\right)i}{8500}
Combine the real and imaginary parts in 6300-5400i-2100i-1800.
\frac{4500-7500i}{8500}
Do the additions in 6300-1800+\left(-5400-2100\right)i.
\frac{9}{17}-\frac{15}{17}i
Divide 4500-7500i by 8500 to get \frac{9}{17}-\frac{15}{17}i.
Re(\frac{\left(90-30i\right)\left(70-60i\right)}{\left(70+60i\right)\left(70-60i\right)})
Multiply both numerator and denominator of \frac{90-30i}{70+60i} by the complex conjugate of the denominator, 70-60i.
Re(\frac{\left(90-30i\right)\left(70-60i\right)}{70^{2}-60^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(90-30i\right)\left(70-60i\right)}{8500})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{90\times 70+90\times \left(-60i\right)-30i\times 70-30\left(-60\right)i^{2}}{8500})
Multiply complex numbers 90-30i and 70-60i like you multiply binomials.
Re(\frac{90\times 70+90\times \left(-60i\right)-30i\times 70-30\left(-60\right)\left(-1\right)}{8500})
By definition, i^{2} is -1.
Re(\frac{6300-5400i-2100i-1800}{8500})
Do the multiplications in 90\times 70+90\times \left(-60i\right)-30i\times 70-30\left(-60\right)\left(-1\right).
Re(\frac{6300-1800+\left(-5400-2100\right)i}{8500})
Combine the real and imaginary parts in 6300-5400i-2100i-1800.
Re(\frac{4500-7500i}{8500})
Do the additions in 6300-1800+\left(-5400-2100\right)i.
Re(\frac{9}{17}-\frac{15}{17}i)
Divide 4500-7500i by 8500 to get \frac{9}{17}-\frac{15}{17}i.
\frac{9}{17}
The real part of \frac{9}{17}-\frac{15}{17}i is \frac{9}{17}.