Solve for x
x=0
Graph
Share
Copied to clipboard
\left(x+40\right)\times 90-\left(x+90\right)\times 40=0\times 2\left(x+40\right)\left(x+90\right)
Variable x cannot be equal to any of the values -90,-40 since division by zero is not defined. Multiply both sides of the equation by \left(x+40\right)\left(x+90\right), the least common multiple of x+90,x+40.
90x+3600-\left(x+90\right)\times 40=0\times 2\left(x+40\right)\left(x+90\right)
Use the distributive property to multiply x+40 by 90.
90x+3600-\left(40x+3600\right)=0\times 2\left(x+40\right)\left(x+90\right)
Use the distributive property to multiply x+90 by 40.
90x+3600-40x-3600=0\times 2\left(x+40\right)\left(x+90\right)
To find the opposite of 40x+3600, find the opposite of each term.
50x+3600-3600=0\times 2\left(x+40\right)\left(x+90\right)
Combine 90x and -40x to get 50x.
50x=0\times 2\left(x+40\right)\left(x+90\right)
Subtract 3600 from 3600 to get 0.
50x=0\left(x+40\right)\left(x+90\right)
Multiply 0 and 2 to get 0.
50x=0
Anything times zero gives zero.
x=0
Product of two numbers is equal to 0 if at least one of them is 0. Since 50 is not equal to 0, x must be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}