Evaluate
\frac{6909}{100}=69.09
Factor
\frac{3 \cdot 7 ^ {2} \cdot 47}{2 ^ {2} \cdot 5 ^ {2}} = 69\frac{9}{100} = 69.09
Share
Copied to clipboard
90\times \frac{75}{90}+\frac{95}{10}-\frac{78}{10}-\frac{761}{100}
Anything divided by one gives itself.
90\times \frac{5}{6}+\frac{95}{10}-\frac{78}{10}-\frac{761}{100}
Reduce the fraction \frac{75}{90} to lowest terms by extracting and canceling out 15.
\frac{90\times 5}{6}+\frac{95}{10}-\frac{78}{10}-\frac{761}{100}
Express 90\times \frac{5}{6} as a single fraction.
\frac{450}{6}+\frac{95}{10}-\frac{78}{10}-\frac{761}{100}
Multiply 90 and 5 to get 450.
75+\frac{95}{10}-\frac{78}{10}-\frac{761}{100}
Divide 450 by 6 to get 75.
75+\frac{19}{2}-\frac{78}{10}-\frac{761}{100}
Reduce the fraction \frac{95}{10} to lowest terms by extracting and canceling out 5.
\frac{150}{2}+\frac{19}{2}-\frac{78}{10}-\frac{761}{100}
Convert 75 to fraction \frac{150}{2}.
\frac{150+19}{2}-\frac{78}{10}-\frac{761}{100}
Since \frac{150}{2} and \frac{19}{2} have the same denominator, add them by adding their numerators.
\frac{169}{2}-\frac{78}{10}-\frac{761}{100}
Add 150 and 19 to get 169.
\frac{169}{2}-\frac{39}{5}-\frac{761}{100}
Reduce the fraction \frac{78}{10} to lowest terms by extracting and canceling out 2.
\frac{845}{10}-\frac{78}{10}-\frac{761}{100}
Least common multiple of 2 and 5 is 10. Convert \frac{169}{2} and \frac{39}{5} to fractions with denominator 10.
\frac{845-78}{10}-\frac{761}{100}
Since \frac{845}{10} and \frac{78}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{767}{10}-\frac{761}{100}
Subtract 78 from 845 to get 767.
\frac{7670}{100}-\frac{761}{100}
Least common multiple of 10 and 100 is 100. Convert \frac{767}{10} and \frac{761}{100} to fractions with denominator 100.
\frac{7670-761}{100}
Since \frac{7670}{100} and \frac{761}{100} have the same denominator, subtract them by subtracting their numerators.
\frac{6909}{100}
Subtract 761 from 7670 to get 6909.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}