Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(9-x^{2}\right)\left(x^{2}+8x+12\right)}{\left(x^{2}-x-42\right)\left(x^{2}+2x-15\right)}
Multiply \frac{9-x^{2}}{x^{2}-x-42} times \frac{x^{2}+8x+12}{x^{2}+2x-15} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x-3\right)\left(-x-3\right)\left(x+2\right)\left(x+6\right)}{\left(x-7\right)\left(x-3\right)\left(x+5\right)\left(x+6\right)}
Factor the expressions that are not already factored.
\frac{\left(-x-3\right)\left(x+2\right)}{\left(x-7\right)\left(x+5\right)}
Cancel out \left(x-3\right)\left(x+6\right) in both numerator and denominator.
\frac{-x^{2}-5x-6}{x^{2}-2x-35}
Expand the expression.
\frac{\left(9-x^{2}\right)\left(x^{2}+8x+12\right)}{\left(x^{2}-x-42\right)\left(x^{2}+2x-15\right)}
Multiply \frac{9-x^{2}}{x^{2}-x-42} times \frac{x^{2}+8x+12}{x^{2}+2x-15} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x-3\right)\left(-x-3\right)\left(x+2\right)\left(x+6\right)}{\left(x-7\right)\left(x-3\right)\left(x+5\right)\left(x+6\right)}
Factor the expressions that are not already factored.
\frac{\left(-x-3\right)\left(x+2\right)}{\left(x-7\right)\left(x+5\right)}
Cancel out \left(x-3\right)\left(x+6\right) in both numerator and denominator.
\frac{-x^{2}-5x-6}{x^{2}-2x-35}
Expand the expression.