Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

9a^{2}-\frac{a+49}{4a^{2}+7a}
Calculate 7 to the power of 2 and get 49.
9a^{2}-\frac{a+49}{a\left(4a+7\right)}
Factor 4a^{2}+7a.
\frac{9a^{2}a\left(4a+7\right)}{a\left(4a+7\right)}-\frac{a+49}{a\left(4a+7\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 9a^{2} times \frac{a\left(4a+7\right)}{a\left(4a+7\right)}.
\frac{9a^{2}a\left(4a+7\right)-\left(a+49\right)}{a\left(4a+7\right)}
Since \frac{9a^{2}a\left(4a+7\right)}{a\left(4a+7\right)} and \frac{a+49}{a\left(4a+7\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{36a^{4}+63a^{3}-a-49}{a\left(4a+7\right)}
Do the multiplications in 9a^{2}a\left(4a+7\right)-\left(a+49\right).
\frac{36a^{4}+63a^{3}-a-49}{4a^{2}+7a}
Expand a\left(4a+7\right).
9a^{2}-\frac{a+49}{4a^{2}+7a}
Calculate 7 to the power of 2 and get 49.
9a^{2}-\frac{a+49}{a\left(4a+7\right)}
Factor 4a^{2}+7a.
\frac{9a^{2}a\left(4a+7\right)}{a\left(4a+7\right)}-\frac{a+49}{a\left(4a+7\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 9a^{2} times \frac{a\left(4a+7\right)}{a\left(4a+7\right)}.
\frac{9a^{2}a\left(4a+7\right)-\left(a+49\right)}{a\left(4a+7\right)}
Since \frac{9a^{2}a\left(4a+7\right)}{a\left(4a+7\right)} and \frac{a+49}{a\left(4a+7\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{36a^{4}+63a^{3}-a-49}{a\left(4a+7\right)}
Do the multiplications in 9a^{2}a\left(4a+7\right)-\left(a+49\right).
\frac{36a^{4}+63a^{3}-a-49}{4a^{2}+7a}
Expand a\left(4a+7\right).