Evaluate
\frac{2430}{121}\approx 20.082644628
Factor
\frac{2 \cdot 5 \cdot 3 ^ {5}}{11 ^ {2}} = 20\frac{10}{121} = 20.082644628099175
Share
Copied to clipboard
\frac{9\times 10^{3}\times 3\times 9\times 10^{-6}}{0.11^{2}}
To multiply powers of the same base, add their exponents. Add 9 and -6 to get 3.
\frac{9\times 10^{-3}\times 3\times 9}{0.11^{2}}
To multiply powers of the same base, add their exponents. Add 3 and -6 to get -3.
\frac{9\times \frac{1}{1000}\times 3\times 9}{0.11^{2}}
Calculate 10 to the power of -3 and get \frac{1}{1000}.
\frac{\frac{9}{1000}\times 3\times 9}{0.11^{2}}
Multiply 9 and \frac{1}{1000} to get \frac{9}{1000}.
\frac{\frac{27}{1000}\times 9}{0.11^{2}}
Multiply \frac{9}{1000} and 3 to get \frac{27}{1000}.
\frac{\frac{243}{1000}}{0.11^{2}}
Multiply \frac{27}{1000} and 9 to get \frac{243}{1000}.
\frac{\frac{243}{1000}}{0.0121}
Calculate 0.11 to the power of 2 and get 0.0121.
\frac{243}{1000\times 0.0121}
Express \frac{\frac{243}{1000}}{0.0121} as a single fraction.
\frac{243}{12.1}
Multiply 1000 and 0.0121 to get 12.1.
\frac{2430}{121}
Expand \frac{243}{12.1} by multiplying both numerator and the denominator by 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}