Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{9}{x-6}+\frac{x-114}{\left(x-6\right)\left(x+6\right)}
Factor x^{2}-36.
\frac{9\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}+\frac{x-114}{\left(x-6\right)\left(x+6\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-6 and \left(x-6\right)\left(x+6\right) is \left(x-6\right)\left(x+6\right). Multiply \frac{9}{x-6} times \frac{x+6}{x+6}.
\frac{9\left(x+6\right)+x-114}{\left(x-6\right)\left(x+6\right)}
Since \frac{9\left(x+6\right)}{\left(x-6\right)\left(x+6\right)} and \frac{x-114}{\left(x-6\right)\left(x+6\right)} have the same denominator, add them by adding their numerators.
\frac{9x+54+x-114}{\left(x-6\right)\left(x+6\right)}
Do the multiplications in 9\left(x+6\right)+x-114.
\frac{10x-60}{\left(x-6\right)\left(x+6\right)}
Combine like terms in 9x+54+x-114.
\frac{10\left(x-6\right)}{\left(x-6\right)\left(x+6\right)}
Factor the expressions that are not already factored in \frac{10x-60}{\left(x-6\right)\left(x+6\right)}.
\frac{10}{x+6}
Cancel out x-6 in both numerator and denominator.
\frac{9}{x-6}+\frac{x-114}{\left(x-6\right)\left(x+6\right)}
Factor x^{2}-36.
\frac{9\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}+\frac{x-114}{\left(x-6\right)\left(x+6\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-6 and \left(x-6\right)\left(x+6\right) is \left(x-6\right)\left(x+6\right). Multiply \frac{9}{x-6} times \frac{x+6}{x+6}.
\frac{9\left(x+6\right)+x-114}{\left(x-6\right)\left(x+6\right)}
Since \frac{9\left(x+6\right)}{\left(x-6\right)\left(x+6\right)} and \frac{x-114}{\left(x-6\right)\left(x+6\right)} have the same denominator, add them by adding their numerators.
\frac{9x+54+x-114}{\left(x-6\right)\left(x+6\right)}
Do the multiplications in 9\left(x+6\right)+x-114.
\frac{10x-60}{\left(x-6\right)\left(x+6\right)}
Combine like terms in 9x+54+x-114.
\frac{10\left(x-6\right)}{\left(x-6\right)\left(x+6\right)}
Factor the expressions that are not already factored in \frac{10x-60}{\left(x-6\right)\left(x+6\right)}.
\frac{10}{x+6}
Cancel out x-6 in both numerator and denominator.