Solve for x
x=-\frac{23}{25}=-0.92
Graph
Share
Copied to clipboard
\frac{9}{8}x-\frac{17}{6}\left(-\frac{5}{4}x-1\right)=2x+\frac{1}{3}\left(\frac{7}{4}x+\frac{11}{4}\right)
Fraction \frac{-5}{4} can be rewritten as -\frac{5}{4} by extracting the negative sign.
\frac{9}{8}x-\frac{17}{6}\left(-\frac{5}{4}\right)x-\frac{17}{6}\left(-1\right)=2x+\frac{1}{3}\left(\frac{7}{4}x+\frac{11}{4}\right)
Use the distributive property to multiply -\frac{17}{6} by -\frac{5}{4}x-1.
\frac{9}{8}x+\frac{-17\left(-5\right)}{6\times 4}x-\frac{17}{6}\left(-1\right)=2x+\frac{1}{3}\left(\frac{7}{4}x+\frac{11}{4}\right)
Multiply -\frac{17}{6} times -\frac{5}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{9}{8}x+\frac{85}{24}x-\frac{17}{6}\left(-1\right)=2x+\frac{1}{3}\left(\frac{7}{4}x+\frac{11}{4}\right)
Do the multiplications in the fraction \frac{-17\left(-5\right)}{6\times 4}.
\frac{9}{8}x+\frac{85}{24}x+\frac{17}{6}=2x+\frac{1}{3}\left(\frac{7}{4}x+\frac{11}{4}\right)
Multiply -\frac{17}{6} and -1 to get \frac{17}{6}.
\frac{14}{3}x+\frac{17}{6}=2x+\frac{1}{3}\left(\frac{7}{4}x+\frac{11}{4}\right)
Combine \frac{9}{8}x and \frac{85}{24}x to get \frac{14}{3}x.
\frac{14}{3}x+\frac{17}{6}=2x+\frac{1}{3}\times \frac{7}{4}x+\frac{1}{3}\times \frac{11}{4}
Use the distributive property to multiply \frac{1}{3} by \frac{7}{4}x+\frac{11}{4}.
\frac{14}{3}x+\frac{17}{6}=2x+\frac{1\times 7}{3\times 4}x+\frac{1}{3}\times \frac{11}{4}
Multiply \frac{1}{3} times \frac{7}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{14}{3}x+\frac{17}{6}=2x+\frac{7}{12}x+\frac{1}{3}\times \frac{11}{4}
Do the multiplications in the fraction \frac{1\times 7}{3\times 4}.
\frac{14}{3}x+\frac{17}{6}=2x+\frac{7}{12}x+\frac{1\times 11}{3\times 4}
Multiply \frac{1}{3} times \frac{11}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{14}{3}x+\frac{17}{6}=2x+\frac{7}{12}x+\frac{11}{12}
Do the multiplications in the fraction \frac{1\times 11}{3\times 4}.
\frac{14}{3}x+\frac{17}{6}=\frac{31}{12}x+\frac{11}{12}
Combine 2x and \frac{7}{12}x to get \frac{31}{12}x.
\frac{14}{3}x+\frac{17}{6}-\frac{31}{12}x=\frac{11}{12}
Subtract \frac{31}{12}x from both sides.
\frac{25}{12}x+\frac{17}{6}=\frac{11}{12}
Combine \frac{14}{3}x and -\frac{31}{12}x to get \frac{25}{12}x.
\frac{25}{12}x=\frac{11}{12}-\frac{17}{6}
Subtract \frac{17}{6} from both sides.
\frac{25}{12}x=\frac{11}{12}-\frac{34}{12}
Least common multiple of 12 and 6 is 12. Convert \frac{11}{12} and \frac{17}{6} to fractions with denominator 12.
\frac{25}{12}x=\frac{11-34}{12}
Since \frac{11}{12} and \frac{34}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{25}{12}x=-\frac{23}{12}
Subtract 34 from 11 to get -23.
x=-\frac{23}{12}\times \frac{12}{25}
Multiply both sides by \frac{12}{25}, the reciprocal of \frac{25}{12}.
x=\frac{-23\times 12}{12\times 25}
Multiply -\frac{23}{12} times \frac{12}{25} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-23}{25}
Cancel out 12 in both numerator and denominator.
x=-\frac{23}{25}
Fraction \frac{-23}{25} can be rewritten as -\frac{23}{25} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}