Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{9}{8}x-\frac{17}{6}\left(-\frac{5}{4}x-1\right)=2x+\frac{1}{3}\left(\frac{7}{4}x+\frac{11}{4}\right)
Fraction \frac{-5}{4} can be rewritten as -\frac{5}{4} by extracting the negative sign.
\frac{9}{8}x-\frac{17}{6}\left(-\frac{5}{4}\right)x-\frac{17}{6}\left(-1\right)=2x+\frac{1}{3}\left(\frac{7}{4}x+\frac{11}{4}\right)
Use the distributive property to multiply -\frac{17}{6} by -\frac{5}{4}x-1.
\frac{9}{8}x+\frac{-17\left(-5\right)}{6\times 4}x-\frac{17}{6}\left(-1\right)=2x+\frac{1}{3}\left(\frac{7}{4}x+\frac{11}{4}\right)
Multiply -\frac{17}{6} times -\frac{5}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{9}{8}x+\frac{85}{24}x-\frac{17}{6}\left(-1\right)=2x+\frac{1}{3}\left(\frac{7}{4}x+\frac{11}{4}\right)
Do the multiplications in the fraction \frac{-17\left(-5\right)}{6\times 4}.
\frac{9}{8}x+\frac{85}{24}x+\frac{17}{6}=2x+\frac{1}{3}\left(\frac{7}{4}x+\frac{11}{4}\right)
Multiply -\frac{17}{6} and -1 to get \frac{17}{6}.
\frac{14}{3}x+\frac{17}{6}=2x+\frac{1}{3}\left(\frac{7}{4}x+\frac{11}{4}\right)
Combine \frac{9}{8}x and \frac{85}{24}x to get \frac{14}{3}x.
\frac{14}{3}x+\frac{17}{6}=2x+\frac{1}{3}\times \frac{7}{4}x+\frac{1}{3}\times \frac{11}{4}
Use the distributive property to multiply \frac{1}{3} by \frac{7}{4}x+\frac{11}{4}.
\frac{14}{3}x+\frac{17}{6}=2x+\frac{1\times 7}{3\times 4}x+\frac{1}{3}\times \frac{11}{4}
Multiply \frac{1}{3} times \frac{7}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{14}{3}x+\frac{17}{6}=2x+\frac{7}{12}x+\frac{1}{3}\times \frac{11}{4}
Do the multiplications in the fraction \frac{1\times 7}{3\times 4}.
\frac{14}{3}x+\frac{17}{6}=2x+\frac{7}{12}x+\frac{1\times 11}{3\times 4}
Multiply \frac{1}{3} times \frac{11}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{14}{3}x+\frac{17}{6}=2x+\frac{7}{12}x+\frac{11}{12}
Do the multiplications in the fraction \frac{1\times 11}{3\times 4}.
\frac{14}{3}x+\frac{17}{6}=\frac{31}{12}x+\frac{11}{12}
Combine 2x and \frac{7}{12}x to get \frac{31}{12}x.
\frac{14}{3}x+\frac{17}{6}-\frac{31}{12}x=\frac{11}{12}
Subtract \frac{31}{12}x from both sides.
\frac{25}{12}x+\frac{17}{6}=\frac{11}{12}
Combine \frac{14}{3}x and -\frac{31}{12}x to get \frac{25}{12}x.
\frac{25}{12}x=\frac{11}{12}-\frac{17}{6}
Subtract \frac{17}{6} from both sides.
\frac{25}{12}x=\frac{11}{12}-\frac{34}{12}
Least common multiple of 12 and 6 is 12. Convert \frac{11}{12} and \frac{17}{6} to fractions with denominator 12.
\frac{25}{12}x=\frac{11-34}{12}
Since \frac{11}{12} and \frac{34}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{25}{12}x=-\frac{23}{12}
Subtract 34 from 11 to get -23.
x=-\frac{23}{12}\times \frac{12}{25}
Multiply both sides by \frac{12}{25}, the reciprocal of \frac{25}{12}.
x=\frac{-23\times 12}{12\times 25}
Multiply -\frac{23}{12} times \frac{12}{25} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-23}{25}
Cancel out 12 in both numerator and denominator.
x=-\frac{23}{25}
Fraction \frac{-23}{25} can be rewritten as -\frac{23}{25} by extracting the negative sign.