Evaluate
\frac{\sqrt{14}}{2}+\frac{9}{7}\approx 3.156542979
Factor
\frac{7 \sqrt{14} + 18}{14} = 3.1565429791012565
Share
Copied to clipboard
\frac{9}{7}+\frac{\sqrt{7}}{\sqrt{2}}
Rewrite the square root of the division \sqrt{\frac{7}{2}} as the division of square roots \frac{\sqrt{7}}{\sqrt{2}}.
\frac{9}{7}+\frac{\sqrt{7}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{7}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{9}{7}+\frac{\sqrt{7}\sqrt{2}}{2}
The square of \sqrt{2} is 2.
\frac{9}{7}+\frac{\sqrt{14}}{2}
To multiply \sqrt{7} and \sqrt{2}, multiply the numbers under the square root.
\frac{9\times 2}{14}+\frac{7\sqrt{14}}{14}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 7 and 2 is 14. Multiply \frac{9}{7} times \frac{2}{2}. Multiply \frac{\sqrt{14}}{2} times \frac{7}{7}.
\frac{9\times 2+7\sqrt{14}}{14}
Since \frac{9\times 2}{14} and \frac{7\sqrt{14}}{14} have the same denominator, add them by adding their numerators.
\frac{18+7\sqrt{14}}{14}
Do the multiplications in 9\times 2+7\sqrt{14}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}