Solve for x
x=\frac{3}{5}=0.6
Graph
Share
Copied to clipboard
\left(x-3\right)\times 9=-\left(3+x\right)\times 6
Variable x cannot be equal to any of the values -3,3 since division by zero is not defined. Multiply both sides of the equation by \left(x-3\right)\left(x+3\right), the least common multiple of 3+x,3-x.
9x-27=-\left(3+x\right)\times 6
Use the distributive property to multiply x-3 by 9.
9x-27=-6\left(3+x\right)
Multiply -1 and 6 to get -6.
9x-27=-18-6x
Use the distributive property to multiply -6 by 3+x.
9x-27+6x=-18
Add 6x to both sides.
15x-27=-18
Combine 9x and 6x to get 15x.
15x=-18+27
Add 27 to both sides.
15x=9
Add -18 and 27 to get 9.
x=\frac{9}{15}
Divide both sides by 15.
x=\frac{3}{5}
Reduce the fraction \frac{9}{15} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}