Evaluate
\frac{41}{4}=10.25
Factor
\frac{41}{2 ^ {2}} = 10\frac{1}{4} = 10.25
Share
Copied to clipboard
\frac{9}{2}+\frac{7}{2}\times \frac{12}{7}-\frac{\frac{1}{2}}{\frac{2}{1}}
Divide \frac{7}{2} by \frac{7}{12} by multiplying \frac{7}{2} by the reciprocal of \frac{7}{12}.
\frac{9}{2}+\frac{7\times 12}{2\times 7}-\frac{\frac{1}{2}}{\frac{2}{1}}
Multiply \frac{7}{2} times \frac{12}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{9}{2}+\frac{12}{2}-\frac{\frac{1}{2}}{\frac{2}{1}}
Cancel out 7 in both numerator and denominator.
\frac{9+12}{2}-\frac{\frac{1}{2}}{\frac{2}{1}}
Since \frac{9}{2} and \frac{12}{2} have the same denominator, add them by adding their numerators.
\frac{21}{2}-\frac{\frac{1}{2}}{\frac{2}{1}}
Add 9 and 12 to get 21.
\frac{21}{2}-\frac{1}{2\times 2}
Divide \frac{1}{2} by \frac{2}{1} by multiplying \frac{1}{2} by the reciprocal of \frac{2}{1}.
\frac{21}{2}-\frac{1}{4}
Multiply 2 and 2 to get 4.
\frac{42}{4}-\frac{1}{4}
Least common multiple of 2 and 4 is 4. Convert \frac{21}{2} and \frac{1}{4} to fractions with denominator 4.
\frac{42-1}{4}
Since \frac{42}{4} and \frac{1}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{41}{4}
Subtract 1 from 42 to get 41.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}