Evaluate
1
Factor
1
Share
Copied to clipboard
\frac{9}{13}-\left(\frac{99}{143}-\frac{26}{143}\right)+\frac{9}{11}
Least common multiple of 13 and 11 is 143. Convert \frac{9}{13} and \frac{2}{11} to fractions with denominator 143.
\frac{9}{13}-\frac{99-26}{143}+\frac{9}{11}
Since \frac{99}{143} and \frac{26}{143} have the same denominator, subtract them by subtracting their numerators.
\frac{9}{13}-\frac{73}{143}+\frac{9}{11}
Subtract 26 from 99 to get 73.
\frac{99}{143}-\frac{73}{143}+\frac{9}{11}
Least common multiple of 13 and 143 is 143. Convert \frac{9}{13} and \frac{73}{143} to fractions with denominator 143.
\frac{99-73}{143}+\frac{9}{11}
Since \frac{99}{143} and \frac{73}{143} have the same denominator, subtract them by subtracting their numerators.
\frac{26}{143}+\frac{9}{11}
Subtract 73 from 99 to get 26.
\frac{2}{11}+\frac{9}{11}
Reduce the fraction \frac{26}{143} to lowest terms by extracting and canceling out 13.
\frac{2+9}{11}
Since \frac{2}{11} and \frac{9}{11} have the same denominator, add them by adding their numerators.
\frac{11}{11}
Add 2 and 9 to get 11.
1
Divide 11 by 11 to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}