Solve for y
y=\frac{-\sqrt{749}i-19}{18}\approx -1.055555556-1.520436909i
y=\frac{-19+\sqrt{749}i}{18}\approx -1.055555556+1.520436909i
Share
Copied to clipboard
\left(3y-2\right)\left(8y-5\right)=5\left(-5-2y\right)\left(3y+7\right)
Variable y cannot be equal to any of the values -\frac{5}{2},\frac{2}{3} since division by zero is not defined. Multiply both sides of the equation by \left(3y-2\right)\left(2y+5\right), the least common multiple of 2y+5,-3y+2.
24y^{2}-31y+10=5\left(-5-2y\right)\left(3y+7\right)
Use the distributive property to multiply 3y-2 by 8y-5 and combine like terms.
24y^{2}-31y+10=\left(-25-10y\right)\left(3y+7\right)
Use the distributive property to multiply 5 by -5-2y.
24y^{2}-31y+10=-145y-175-30y^{2}
Use the distributive property to multiply -25-10y by 3y+7 and combine like terms.
24y^{2}-31y+10+145y=-175-30y^{2}
Add 145y to both sides.
24y^{2}+114y+10=-175-30y^{2}
Combine -31y and 145y to get 114y.
24y^{2}+114y+10-\left(-175\right)=-30y^{2}
Subtract -175 from both sides.
24y^{2}+114y+10+175=-30y^{2}
The opposite of -175 is 175.
24y^{2}+114y+10+175+30y^{2}=0
Add 30y^{2} to both sides.
24y^{2}+114y+185+30y^{2}=0
Add 10 and 175 to get 185.
54y^{2}+114y+185=0
Combine 24y^{2} and 30y^{2} to get 54y^{2}.
y=\frac{-114±\sqrt{114^{2}-4\times 54\times 185}}{2\times 54}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 54 for a, 114 for b, and 185 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-114±\sqrt{12996-4\times 54\times 185}}{2\times 54}
Square 114.
y=\frac{-114±\sqrt{12996-216\times 185}}{2\times 54}
Multiply -4 times 54.
y=\frac{-114±\sqrt{12996-39960}}{2\times 54}
Multiply -216 times 185.
y=\frac{-114±\sqrt{-26964}}{2\times 54}
Add 12996 to -39960.
y=\frac{-114±6\sqrt{749}i}{2\times 54}
Take the square root of -26964.
y=\frac{-114±6\sqrt{749}i}{108}
Multiply 2 times 54.
y=\frac{-114+6\sqrt{749}i}{108}
Now solve the equation y=\frac{-114±6\sqrt{749}i}{108} when ± is plus. Add -114 to 6i\sqrt{749}.
y=\frac{-19+\sqrt{749}i}{18}
Divide -114+6i\sqrt{749} by 108.
y=\frac{-6\sqrt{749}i-114}{108}
Now solve the equation y=\frac{-114±6\sqrt{749}i}{108} when ± is minus. Subtract 6i\sqrt{749} from -114.
y=\frac{-\sqrt{749}i-19}{18}
Divide -114-6i\sqrt{749} by 108.
y=\frac{-19+\sqrt{749}i}{18} y=\frac{-\sqrt{749}i-19}{18}
The equation is now solved.
\left(3y-2\right)\left(8y-5\right)=5\left(-5-2y\right)\left(3y+7\right)
Variable y cannot be equal to any of the values -\frac{5}{2},\frac{2}{3} since division by zero is not defined. Multiply both sides of the equation by \left(3y-2\right)\left(2y+5\right), the least common multiple of 2y+5,-3y+2.
24y^{2}-31y+10=5\left(-5-2y\right)\left(3y+7\right)
Use the distributive property to multiply 3y-2 by 8y-5 and combine like terms.
24y^{2}-31y+10=\left(-25-10y\right)\left(3y+7\right)
Use the distributive property to multiply 5 by -5-2y.
24y^{2}-31y+10=-145y-175-30y^{2}
Use the distributive property to multiply -25-10y by 3y+7 and combine like terms.
24y^{2}-31y+10+145y=-175-30y^{2}
Add 145y to both sides.
24y^{2}+114y+10=-175-30y^{2}
Combine -31y and 145y to get 114y.
24y^{2}+114y+10+30y^{2}=-175
Add 30y^{2} to both sides.
54y^{2}+114y+10=-175
Combine 24y^{2} and 30y^{2} to get 54y^{2}.
54y^{2}+114y=-175-10
Subtract 10 from both sides.
54y^{2}+114y=-185
Subtract 10 from -175 to get -185.
\frac{54y^{2}+114y}{54}=-\frac{185}{54}
Divide both sides by 54.
y^{2}+\frac{114}{54}y=-\frac{185}{54}
Dividing by 54 undoes the multiplication by 54.
y^{2}+\frac{19}{9}y=-\frac{185}{54}
Reduce the fraction \frac{114}{54} to lowest terms by extracting and canceling out 6.
y^{2}+\frac{19}{9}y+\left(\frac{19}{18}\right)^{2}=-\frac{185}{54}+\left(\frac{19}{18}\right)^{2}
Divide \frac{19}{9}, the coefficient of the x term, by 2 to get \frac{19}{18}. Then add the square of \frac{19}{18} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+\frac{19}{9}y+\frac{361}{324}=-\frac{185}{54}+\frac{361}{324}
Square \frac{19}{18} by squaring both the numerator and the denominator of the fraction.
y^{2}+\frac{19}{9}y+\frac{361}{324}=-\frac{749}{324}
Add -\frac{185}{54} to \frac{361}{324} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y+\frac{19}{18}\right)^{2}=-\frac{749}{324}
Factor y^{2}+\frac{19}{9}y+\frac{361}{324}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+\frac{19}{18}\right)^{2}}=\sqrt{-\frac{749}{324}}
Take the square root of both sides of the equation.
y+\frac{19}{18}=\frac{\sqrt{749}i}{18} y+\frac{19}{18}=-\frac{\sqrt{749}i}{18}
Simplify.
y=\frac{-19+\sqrt{749}i}{18} y=\frac{-\sqrt{749}i-19}{18}
Subtract \frac{19}{18} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}