Solve for x (complex solution)
x=-\frac{\sqrt{14}i}{12}+\frac{1}{3}\approx 0.333333333-0.311804782i
x=\frac{\sqrt{14}i}{12}+\frac{1}{3}\approx 0.333333333+0.311804782i
Graph
Share
Copied to clipboard
\left(x-2\right)\left(8x-2\right)-\left(2x-1\right)\left(13x-3\right)=3\left(x-2\right)\left(2x-1\right)
Variable x cannot be equal to any of the values \frac{1}{2},2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(2x-1\right), the least common multiple of 2x-1,1x-2.
8x^{2}-18x+4-\left(2x-1\right)\left(13x-3\right)=3\left(x-2\right)\left(2x-1\right)
Use the distributive property to multiply x-2 by 8x-2 and combine like terms.
8x^{2}-18x+4-\left(26x^{2}-19x+3\right)=3\left(x-2\right)\left(2x-1\right)
Use the distributive property to multiply 2x-1 by 13x-3 and combine like terms.
8x^{2}-18x+4-26x^{2}+19x-3=3\left(x-2\right)\left(2x-1\right)
To find the opposite of 26x^{2}-19x+3, find the opposite of each term.
-18x^{2}-18x+4+19x-3=3\left(x-2\right)\left(2x-1\right)
Combine 8x^{2} and -26x^{2} to get -18x^{2}.
-18x^{2}+x+4-3=3\left(x-2\right)\left(2x-1\right)
Combine -18x and 19x to get x.
-18x^{2}+x+1=3\left(x-2\right)\left(2x-1\right)
Subtract 3 from 4 to get 1.
-18x^{2}+x+1=\left(3x-6\right)\left(2x-1\right)
Use the distributive property to multiply 3 by x-2.
-18x^{2}+x+1=6x^{2}-15x+6
Use the distributive property to multiply 3x-6 by 2x-1 and combine like terms.
-18x^{2}+x+1-6x^{2}=-15x+6
Subtract 6x^{2} from both sides.
-24x^{2}+x+1=-15x+6
Combine -18x^{2} and -6x^{2} to get -24x^{2}.
-24x^{2}+x+1+15x=6
Add 15x to both sides.
-24x^{2}+16x+1=6
Combine x and 15x to get 16x.
-24x^{2}+16x+1-6=0
Subtract 6 from both sides.
-24x^{2}+16x-5=0
Subtract 6 from 1 to get -5.
x=\frac{-16±\sqrt{16^{2}-4\left(-24\right)\left(-5\right)}}{2\left(-24\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -24 for a, 16 for b, and -5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-16±\sqrt{256-4\left(-24\right)\left(-5\right)}}{2\left(-24\right)}
Square 16.
x=\frac{-16±\sqrt{256+96\left(-5\right)}}{2\left(-24\right)}
Multiply -4 times -24.
x=\frac{-16±\sqrt{256-480}}{2\left(-24\right)}
Multiply 96 times -5.
x=\frac{-16±\sqrt{-224}}{2\left(-24\right)}
Add 256 to -480.
x=\frac{-16±4\sqrt{14}i}{2\left(-24\right)}
Take the square root of -224.
x=\frac{-16±4\sqrt{14}i}{-48}
Multiply 2 times -24.
x=\frac{-16+4\sqrt{14}i}{-48}
Now solve the equation x=\frac{-16±4\sqrt{14}i}{-48} when ± is plus. Add -16 to 4i\sqrt{14}.
x=-\frac{\sqrt{14}i}{12}+\frac{1}{3}
Divide -16+4i\sqrt{14} by -48.
x=\frac{-4\sqrt{14}i-16}{-48}
Now solve the equation x=\frac{-16±4\sqrt{14}i}{-48} when ± is minus. Subtract 4i\sqrt{14} from -16.
x=\frac{\sqrt{14}i}{12}+\frac{1}{3}
Divide -16-4i\sqrt{14} by -48.
x=-\frac{\sqrt{14}i}{12}+\frac{1}{3} x=\frac{\sqrt{14}i}{12}+\frac{1}{3}
The equation is now solved.
\left(x-2\right)\left(8x-2\right)-\left(2x-1\right)\left(13x-3\right)=3\left(x-2\right)\left(2x-1\right)
Variable x cannot be equal to any of the values \frac{1}{2},2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(2x-1\right), the least common multiple of 2x-1,1x-2.
8x^{2}-18x+4-\left(2x-1\right)\left(13x-3\right)=3\left(x-2\right)\left(2x-1\right)
Use the distributive property to multiply x-2 by 8x-2 and combine like terms.
8x^{2}-18x+4-\left(26x^{2}-19x+3\right)=3\left(x-2\right)\left(2x-1\right)
Use the distributive property to multiply 2x-1 by 13x-3 and combine like terms.
8x^{2}-18x+4-26x^{2}+19x-3=3\left(x-2\right)\left(2x-1\right)
To find the opposite of 26x^{2}-19x+3, find the opposite of each term.
-18x^{2}-18x+4+19x-3=3\left(x-2\right)\left(2x-1\right)
Combine 8x^{2} and -26x^{2} to get -18x^{2}.
-18x^{2}+x+4-3=3\left(x-2\right)\left(2x-1\right)
Combine -18x and 19x to get x.
-18x^{2}+x+1=3\left(x-2\right)\left(2x-1\right)
Subtract 3 from 4 to get 1.
-18x^{2}+x+1=\left(3x-6\right)\left(2x-1\right)
Use the distributive property to multiply 3 by x-2.
-18x^{2}+x+1=6x^{2}-15x+6
Use the distributive property to multiply 3x-6 by 2x-1 and combine like terms.
-18x^{2}+x+1-6x^{2}=-15x+6
Subtract 6x^{2} from both sides.
-24x^{2}+x+1=-15x+6
Combine -18x^{2} and -6x^{2} to get -24x^{2}.
-24x^{2}+x+1+15x=6
Add 15x to both sides.
-24x^{2}+16x+1=6
Combine x and 15x to get 16x.
-24x^{2}+16x=6-1
Subtract 1 from both sides.
-24x^{2}+16x=5
Subtract 1 from 6 to get 5.
\frac{-24x^{2}+16x}{-24}=\frac{5}{-24}
Divide both sides by -24.
x^{2}+\frac{16}{-24}x=\frac{5}{-24}
Dividing by -24 undoes the multiplication by -24.
x^{2}-\frac{2}{3}x=\frac{5}{-24}
Reduce the fraction \frac{16}{-24} to lowest terms by extracting and canceling out 8.
x^{2}-\frac{2}{3}x=-\frac{5}{24}
Divide 5 by -24.
x^{2}-\frac{2}{3}x+\left(-\frac{1}{3}\right)^{2}=-\frac{5}{24}+\left(-\frac{1}{3}\right)^{2}
Divide -\frac{2}{3}, the coefficient of the x term, by 2 to get -\frac{1}{3}. Then add the square of -\frac{1}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{2}{3}x+\frac{1}{9}=-\frac{5}{24}+\frac{1}{9}
Square -\frac{1}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{2}{3}x+\frac{1}{9}=-\frac{7}{72}
Add -\frac{5}{24} to \frac{1}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{3}\right)^{2}=-\frac{7}{72}
Factor x^{2}-\frac{2}{3}x+\frac{1}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{-\frac{7}{72}}
Take the square root of both sides of the equation.
x-\frac{1}{3}=\frac{\sqrt{14}i}{12} x-\frac{1}{3}=-\frac{\sqrt{14}i}{12}
Simplify.
x=\frac{\sqrt{14}i}{12}+\frac{1}{3} x=-\frac{\sqrt{14}i}{12}+\frac{1}{3}
Add \frac{1}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}