\frac{ 89 \times 60 \% +92 \times 15 \% +86 \times 10 \% +95 \times 15 \% }{ 100 \% }
Evaluate
\frac{1801}{20}=90.05
Factor
\frac{1801}{2 ^ {2} \cdot 5} = 90\frac{1}{20} = 90.05
Share
Copied to clipboard
\frac{89\times \frac{60}{100}+92\times \frac{15}{100}+86\times \frac{10}{100}+95\times \frac{15}{100}}{1}
Divide 100 by 100 to get 1.
\frac{89\times \frac{3}{5}+92\times \frac{15}{100}+86\times \frac{10}{100}+95\times \frac{15}{100}}{1}
Reduce the fraction \frac{60}{100} to lowest terms by extracting and canceling out 20.
\frac{\frac{89\times 3}{5}+92\times \frac{15}{100}+86\times \frac{10}{100}+95\times \frac{15}{100}}{1}
Express 89\times \frac{3}{5} as a single fraction.
\frac{\frac{267}{5}+92\times \frac{15}{100}+86\times \frac{10}{100}+95\times \frac{15}{100}}{1}
Multiply 89 and 3 to get 267.
\frac{\frac{267}{5}+92\times \frac{3}{20}+86\times \frac{10}{100}+95\times \frac{15}{100}}{1}
Reduce the fraction \frac{15}{100} to lowest terms by extracting and canceling out 5.
\frac{\frac{267}{5}+\frac{92\times 3}{20}+86\times \frac{10}{100}+95\times \frac{15}{100}}{1}
Express 92\times \frac{3}{20} as a single fraction.
\frac{\frac{267}{5}+\frac{276}{20}+86\times \frac{10}{100}+95\times \frac{15}{100}}{1}
Multiply 92 and 3 to get 276.
\frac{\frac{267}{5}+\frac{69}{5}+86\times \frac{10}{100}+95\times \frac{15}{100}}{1}
Reduce the fraction \frac{276}{20} to lowest terms by extracting and canceling out 4.
\frac{\frac{267+69}{5}+86\times \frac{10}{100}+95\times \frac{15}{100}}{1}
Since \frac{267}{5} and \frac{69}{5} have the same denominator, add them by adding their numerators.
\frac{\frac{336}{5}+86\times \frac{10}{100}+95\times \frac{15}{100}}{1}
Add 267 and 69 to get 336.
\frac{\frac{336}{5}+86\times \frac{1}{10}+95\times \frac{15}{100}}{1}
Reduce the fraction \frac{10}{100} to lowest terms by extracting and canceling out 10.
\frac{\frac{336}{5}+\frac{86}{10}+95\times \frac{15}{100}}{1}
Multiply 86 and \frac{1}{10} to get \frac{86}{10}.
\frac{\frac{336}{5}+\frac{43}{5}+95\times \frac{15}{100}}{1}
Reduce the fraction \frac{86}{10} to lowest terms by extracting and canceling out 2.
\frac{\frac{336+43}{5}+95\times \frac{15}{100}}{1}
Since \frac{336}{5} and \frac{43}{5} have the same denominator, add them by adding their numerators.
\frac{\frac{379}{5}+95\times \frac{15}{100}}{1}
Add 336 and 43 to get 379.
\frac{\frac{379}{5}+95\times \frac{3}{20}}{1}
Reduce the fraction \frac{15}{100} to lowest terms by extracting and canceling out 5.
\frac{\frac{379}{5}+\frac{95\times 3}{20}}{1}
Express 95\times \frac{3}{20} as a single fraction.
\frac{\frac{379}{5}+\frac{285}{20}}{1}
Multiply 95 and 3 to get 285.
\frac{\frac{379}{5}+\frac{57}{4}}{1}
Reduce the fraction \frac{285}{20} to lowest terms by extracting and canceling out 5.
\frac{\frac{1516}{20}+\frac{285}{20}}{1}
Least common multiple of 5 and 4 is 20. Convert \frac{379}{5} and \frac{57}{4} to fractions with denominator 20.
\frac{\frac{1516+285}{20}}{1}
Since \frac{1516}{20} and \frac{285}{20} have the same denominator, add them by adding their numerators.
\frac{\frac{1801}{20}}{1}
Add 1516 and 285 to get 1801.
\frac{1801}{20}
Anything divided by one gives itself.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}