Evaluate
\frac{89}{23}\approx 3.869565217
Factor
\frac{89}{23} = 3\frac{20}{23} = 3.869565217391304
Share
Copied to clipboard
\begin{array}{l}\phantom{23)}\phantom{1}\\23\overline{)89}\\\end{array}
Use the 1^{st} digit 8 from dividend 89
\begin{array}{l}\phantom{23)}0\phantom{2}\\23\overline{)89}\\\end{array}
Since 8 is less than 23, use the next digit 9 from dividend 89 and add 0 to the quotient
\begin{array}{l}\phantom{23)}0\phantom{3}\\23\overline{)89}\\\end{array}
Use the 2^{nd} digit 9 from dividend 89
\begin{array}{l}\phantom{23)}03\phantom{4}\\23\overline{)89}\\\phantom{23)}\underline{\phantom{}69\phantom{}}\\\phantom{23)}20\\\end{array}
Find closest multiple of 23 to 89. We see that 3 \times 23 = 69 is the nearest. Now subtract 69 from 89 to get reminder 20. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }20
Since 20 is less than 23, stop the division. The reminder is 20. The topmost line 03 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}