Evaluate
\frac{89}{22}\approx 4.045454545
Factor
\frac{89}{2 \cdot 11} = 4\frac{1}{22} = 4.045454545454546
Share
Copied to clipboard
\begin{array}{l}\phantom{22)}\phantom{1}\\22\overline{)89}\\\end{array}
Use the 1^{st} digit 8 from dividend 89
\begin{array}{l}\phantom{22)}0\phantom{2}\\22\overline{)89}\\\end{array}
Since 8 is less than 22, use the next digit 9 from dividend 89 and add 0 to the quotient
\begin{array}{l}\phantom{22)}0\phantom{3}\\22\overline{)89}\\\end{array}
Use the 2^{nd} digit 9 from dividend 89
\begin{array}{l}\phantom{22)}04\phantom{4}\\22\overline{)89}\\\phantom{22)}\underline{\phantom{}88\phantom{}}\\\phantom{22)9}1\\\end{array}
Find closest multiple of 22 to 89. We see that 4 \times 22 = 88 is the nearest. Now subtract 88 from 89 to get reminder 1. Add 4 to quotient.
\text{Quotient: }4 \text{Reminder: }1
Since 1 is less than 22, stop the division. The reminder is 1. The topmost line 04 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}