Evaluate
\frac{11}{10}=1.1
Factor
\frac{11}{2 \cdot 5} = 1\frac{1}{10} = 1.1
Share
Copied to clipboard
\begin{array}{l}\phantom{80)}\phantom{1}\\80\overline{)88}\\\end{array}
Use the 1^{st} digit 8 from dividend 88
\begin{array}{l}\phantom{80)}0\phantom{2}\\80\overline{)88}\\\end{array}
Since 8 is less than 80, use the next digit 8 from dividend 88 and add 0 to the quotient
\begin{array}{l}\phantom{80)}0\phantom{3}\\80\overline{)88}\\\end{array}
Use the 2^{nd} digit 8 from dividend 88
\begin{array}{l}\phantom{80)}01\phantom{4}\\80\overline{)88}\\\phantom{80)}\underline{\phantom{}80\phantom{}}\\\phantom{80)9}8\\\end{array}
Find closest multiple of 80 to 88. We see that 1 \times 80 = 80 is the nearest. Now subtract 80 from 88 to get reminder 8. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }8
Since 8 is less than 80, stop the division. The reminder is 8. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}