Evaluate
\frac{875}{73}\approx 11.98630137
Factor
\frac{5 ^ {3} \cdot 7}{73} = 11\frac{72}{73} = 11.986301369863014
Share
Copied to clipboard
\begin{array}{l}\phantom{73)}\phantom{1}\\73\overline{)875}\\\end{array}
Use the 1^{st} digit 8 from dividend 875
\begin{array}{l}\phantom{73)}0\phantom{2}\\73\overline{)875}\\\end{array}
Since 8 is less than 73, use the next digit 7 from dividend 875 and add 0 to the quotient
\begin{array}{l}\phantom{73)}0\phantom{3}\\73\overline{)875}\\\end{array}
Use the 2^{nd} digit 7 from dividend 875
\begin{array}{l}\phantom{73)}01\phantom{4}\\73\overline{)875}\\\phantom{73)}\underline{\phantom{}73\phantom{9}}\\\phantom{73)}14\\\end{array}
Find closest multiple of 73 to 87. We see that 1 \times 73 = 73 is the nearest. Now subtract 73 from 87 to get reminder 14. Add 1 to quotient.
\begin{array}{l}\phantom{73)}01\phantom{5}\\73\overline{)875}\\\phantom{73)}\underline{\phantom{}73\phantom{9}}\\\phantom{73)}145\\\end{array}
Use the 3^{rd} digit 5 from dividend 875
\begin{array}{l}\phantom{73)}011\phantom{6}\\73\overline{)875}\\\phantom{73)}\underline{\phantom{}73\phantom{9}}\\\phantom{73)}145\\\phantom{73)}\underline{\phantom{9}73\phantom{}}\\\phantom{73)9}72\\\end{array}
Find closest multiple of 73 to 145. We see that 1 \times 73 = 73 is the nearest. Now subtract 73 from 145 to get reminder 72. Add 1 to quotient.
\text{Quotient: }11 \text{Reminder: }72
Since 72 is less than 73, stop the division. The reminder is 72. The topmost line 011 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}