Evaluate
\frac{144}{25}=5.76
Factor
\frac{2 ^ {4} \cdot 3 ^ {2}}{5 ^ {2}} = 5\frac{19}{25} = 5.76
Share
Copied to clipboard
\begin{array}{l}\phantom{150)}\phantom{1}\\150\overline{)864}\\\end{array}
Use the 1^{st} digit 8 from dividend 864
\begin{array}{l}\phantom{150)}0\phantom{2}\\150\overline{)864}\\\end{array}
Since 8 is less than 150, use the next digit 6 from dividend 864 and add 0 to the quotient
\begin{array}{l}\phantom{150)}0\phantom{3}\\150\overline{)864}\\\end{array}
Use the 2^{nd} digit 6 from dividend 864
\begin{array}{l}\phantom{150)}00\phantom{4}\\150\overline{)864}\\\end{array}
Since 86 is less than 150, use the next digit 4 from dividend 864 and add 0 to the quotient
\begin{array}{l}\phantom{150)}00\phantom{5}\\150\overline{)864}\\\end{array}
Use the 3^{rd} digit 4 from dividend 864
\begin{array}{l}\phantom{150)}005\phantom{6}\\150\overline{)864}\\\phantom{150)}\underline{\phantom{}750\phantom{}}\\\phantom{150)}114\\\end{array}
Find closest multiple of 150 to 864. We see that 5 \times 150 = 750 is the nearest. Now subtract 750 from 864 to get reminder 114. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }114
Since 114 is less than 150, stop the division. The reminder is 114. The topmost line 005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}