Evaluate
\frac{43}{26}\approx 1.653846154
Factor
\frac{43}{2 \cdot 13} = 1\frac{17}{26} = 1.6538461538461537
Share
Copied to clipboard
\begin{array}{l}\phantom{52)}\phantom{1}\\52\overline{)86}\\\end{array}
Use the 1^{st} digit 8 from dividend 86
\begin{array}{l}\phantom{52)}0\phantom{2}\\52\overline{)86}\\\end{array}
Since 8 is less than 52, use the next digit 6 from dividend 86 and add 0 to the quotient
\begin{array}{l}\phantom{52)}0\phantom{3}\\52\overline{)86}\\\end{array}
Use the 2^{nd} digit 6 from dividend 86
\begin{array}{l}\phantom{52)}01\phantom{4}\\52\overline{)86}\\\phantom{52)}\underline{\phantom{}52\phantom{}}\\\phantom{52)}34\\\end{array}
Find closest multiple of 52 to 86. We see that 1 \times 52 = 52 is the nearest. Now subtract 52 from 86 to get reminder 34. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }34
Since 34 is less than 52, stop the division. The reminder is 34. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}