Evaluate
\frac{854}{23}\approx 37.130434783
Factor
\frac{2 \cdot 7 \cdot 61}{23} = 37\frac{3}{23} = 37.130434782608695
Share
Copied to clipboard
\begin{array}{l}\phantom{23)}\phantom{1}\\23\overline{)854}\\\end{array}
Use the 1^{st} digit 8 from dividend 854
\begin{array}{l}\phantom{23)}0\phantom{2}\\23\overline{)854}\\\end{array}
Since 8 is less than 23, use the next digit 5 from dividend 854 and add 0 to the quotient
\begin{array}{l}\phantom{23)}0\phantom{3}\\23\overline{)854}\\\end{array}
Use the 2^{nd} digit 5 from dividend 854
\begin{array}{l}\phantom{23)}03\phantom{4}\\23\overline{)854}\\\phantom{23)}\underline{\phantom{}69\phantom{9}}\\\phantom{23)}16\\\end{array}
Find closest multiple of 23 to 85. We see that 3 \times 23 = 69 is the nearest. Now subtract 69 from 85 to get reminder 16. Add 3 to quotient.
\begin{array}{l}\phantom{23)}03\phantom{5}\\23\overline{)854}\\\phantom{23)}\underline{\phantom{}69\phantom{9}}\\\phantom{23)}164\\\end{array}
Use the 3^{rd} digit 4 from dividend 854
\begin{array}{l}\phantom{23)}037\phantom{6}\\23\overline{)854}\\\phantom{23)}\underline{\phantom{}69\phantom{9}}\\\phantom{23)}164\\\phantom{23)}\underline{\phantom{}161\phantom{}}\\\phantom{23)99}3\\\end{array}
Find closest multiple of 23 to 164. We see that 7 \times 23 = 161 is the nearest. Now subtract 161 from 164 to get reminder 3. Add 7 to quotient.
\text{Quotient: }37 \text{Reminder: }3
Since 3 is less than 23, stop the division. The reminder is 3. The topmost line 037 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 37.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}