Evaluate
\frac{71\sqrt{10}}{40}\approx 5.613042847
Share
Copied to clipboard
\frac{7.1}{\sqrt{\frac{6.5}{8}+\frac{6.3}{8}}}
Subtract 78.2 from 85.3 to get 7.1.
\frac{7.1}{\sqrt{\frac{65}{80}+\frac{6.3}{8}}}
Expand \frac{6.5}{8} by multiplying both numerator and the denominator by 10.
\frac{7.1}{\sqrt{\frac{13}{16}+\frac{6.3}{8}}}
Reduce the fraction \frac{65}{80} to lowest terms by extracting and canceling out 5.
\frac{7.1}{\sqrt{\frac{13}{16}+\frac{63}{80}}}
Expand \frac{6.3}{8} by multiplying both numerator and the denominator by 10.
\frac{7.1}{\sqrt{\frac{65}{80}+\frac{63}{80}}}
Least common multiple of 16 and 80 is 80. Convert \frac{13}{16} and \frac{63}{80} to fractions with denominator 80.
\frac{7.1}{\sqrt{\frac{65+63}{80}}}
Since \frac{65}{80} and \frac{63}{80} have the same denominator, add them by adding their numerators.
\frac{7.1}{\sqrt{\frac{128}{80}}}
Add 65 and 63 to get 128.
\frac{7.1}{\sqrt{\frac{8}{5}}}
Reduce the fraction \frac{128}{80} to lowest terms by extracting and canceling out 16.
\frac{7.1}{\frac{\sqrt{8}}{\sqrt{5}}}
Rewrite the square root of the division \sqrt{\frac{8}{5}} as the division of square roots \frac{\sqrt{8}}{\sqrt{5}}.
\frac{7.1}{\frac{2\sqrt{2}}{\sqrt{5}}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{7.1}{\frac{2\sqrt{2}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}}
Rationalize the denominator of \frac{2\sqrt{2}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{7.1}{\frac{2\sqrt{2}\sqrt{5}}{5}}
The square of \sqrt{5} is 5.
\frac{7.1}{\frac{2\sqrt{10}}{5}}
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
\frac{7.1\times 5}{2\sqrt{10}}
Divide 7.1 by \frac{2\sqrt{10}}{5} by multiplying 7.1 by the reciprocal of \frac{2\sqrt{10}}{5}.
\frac{7.1\times 5\sqrt{10}}{2\left(\sqrt{10}\right)^{2}}
Rationalize the denominator of \frac{7.1\times 5}{2\sqrt{10}} by multiplying numerator and denominator by \sqrt{10}.
\frac{7.1\times 5\sqrt{10}}{2\times 10}
The square of \sqrt{10} is 10.
\frac{35.5\sqrt{10}}{2\times 10}
Multiply 7.1 and 5 to get 35.5.
\frac{35.5\sqrt{10}}{20}
Multiply 2 and 10 to get 20.
1.775\sqrt{10}
Divide 35.5\sqrt{10} by 20 to get 1.775\sqrt{10}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}