Evaluate
\frac{85}{21}\approx 4.047619048
Factor
\frac{5 \cdot 17}{3 \cdot 7} = 4\frac{1}{21} = 4.0476190476190474
Share
Copied to clipboard
\begin{array}{l}\phantom{21)}\phantom{1}\\21\overline{)85}\\\end{array}
Use the 1^{st} digit 8 from dividend 85
\begin{array}{l}\phantom{21)}0\phantom{2}\\21\overline{)85}\\\end{array}
Since 8 is less than 21, use the next digit 5 from dividend 85 and add 0 to the quotient
\begin{array}{l}\phantom{21)}0\phantom{3}\\21\overline{)85}\\\end{array}
Use the 2^{nd} digit 5 from dividend 85
\begin{array}{l}\phantom{21)}04\phantom{4}\\21\overline{)85}\\\phantom{21)}\underline{\phantom{}84\phantom{}}\\\phantom{21)9}1\\\end{array}
Find closest multiple of 21 to 85. We see that 4 \times 21 = 84 is the nearest. Now subtract 84 from 85 to get reminder 1. Add 4 to quotient.
\text{Quotient: }4 \text{Reminder: }1
Since 1 is less than 21, stop the division. The reminder is 1. The topmost line 04 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}