\frac{ 83 \times 15 \% +66 \times 25 \% +41 \times 20 \% +104 \times 1.5 \times 100 \% }{ 100 \% }
Evaluate
193.15
Factor
\frac{3863}{5 \cdot 2 ^ {2}} = 193\frac{3}{20} = 193.15
Share
Copied to clipboard
\frac{83\times \frac{15}{100}+66\times \frac{25}{100}+41\times \frac{20}{100}+104\times 1.5\times 1}{\frac{100}{100}}
Divide 100 by 100 to get 1.
\frac{83\times \frac{15}{100}+66\times \frac{25}{100}+41\times \frac{20}{100}+104\times 1.5\times 1}{1}
Divide 100 by 100 to get 1.
\frac{83\times \frac{3}{20}+66\times \frac{25}{100}+41\times \frac{20}{100}+104\times 1.5\times 1}{1}
Reduce the fraction \frac{15}{100} to lowest terms by extracting and canceling out 5.
\frac{\frac{83\times 3}{20}+66\times \frac{25}{100}+41\times \frac{20}{100}+104\times 1.5\times 1}{1}
Express 83\times \frac{3}{20} as a single fraction.
\frac{\frac{249}{20}+66\times \frac{25}{100}+41\times \frac{20}{100}+104\times 1.5\times 1}{1}
Multiply 83 and 3 to get 249.
\frac{\frac{249}{20}+66\times \frac{1}{4}+41\times \frac{20}{100}+104\times 1.5\times 1}{1}
Reduce the fraction \frac{25}{100} to lowest terms by extracting and canceling out 25.
\frac{\frac{249}{20}+\frac{66}{4}+41\times \frac{20}{100}+104\times 1.5\times 1}{1}
Multiply 66 and \frac{1}{4} to get \frac{66}{4}.
\frac{\frac{249}{20}+\frac{33}{2}+41\times \frac{20}{100}+104\times 1.5\times 1}{1}
Reduce the fraction \frac{66}{4} to lowest terms by extracting and canceling out 2.
\frac{\frac{249}{20}+\frac{330}{20}+41\times \frac{20}{100}+104\times 1.5\times 1}{1}
Least common multiple of 20 and 2 is 20. Convert \frac{249}{20} and \frac{33}{2} to fractions with denominator 20.
\frac{\frac{249+330}{20}+41\times \frac{20}{100}+104\times 1.5\times 1}{1}
Since \frac{249}{20} and \frac{330}{20} have the same denominator, add them by adding their numerators.
\frac{\frac{579}{20}+41\times \frac{20}{100}+104\times 1.5\times 1}{1}
Add 249 and 330 to get 579.
\frac{\frac{579}{20}+41\times \frac{1}{5}+104\times 1.5\times 1}{1}
Reduce the fraction \frac{20}{100} to lowest terms by extracting and canceling out 20.
\frac{\frac{579}{20}+\frac{41}{5}+104\times 1.5\times 1}{1}
Multiply 41 and \frac{1}{5} to get \frac{41}{5}.
\frac{\frac{579}{20}+\frac{164}{20}+104\times 1.5\times 1}{1}
Least common multiple of 20 and 5 is 20. Convert \frac{579}{20} and \frac{41}{5} to fractions with denominator 20.
\frac{\frac{579+164}{20}+104\times 1.5\times 1}{1}
Since \frac{579}{20} and \frac{164}{20} have the same denominator, add them by adding their numerators.
\frac{\frac{743}{20}+104\times 1.5\times 1}{1}
Add 579 and 164 to get 743.
\frac{\frac{743}{20}+156\times 1}{1}
Multiply 104 and 1.5 to get 156.
\frac{\frac{743}{20}+156}{1}
Multiply 156 and 1 to get 156.
\frac{\frac{743}{20}+\frac{3120}{20}}{1}
Convert 156 to fraction \frac{3120}{20}.
\frac{\frac{743+3120}{20}}{1}
Since \frac{743}{20} and \frac{3120}{20} have the same denominator, add them by adding their numerators.
\frac{\frac{3863}{20}}{1}
Add 743 and 3120 to get 3863.
\frac{3863}{20}
Anything divided by one gives itself.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}