Evaluate
25
Factor
5^{2}
Share
Copied to clipboard
\begin{array}{l}\phantom{33)}\phantom{1}\\33\overline{)825}\\\end{array}
Use the 1^{st} digit 8 from dividend 825
\begin{array}{l}\phantom{33)}0\phantom{2}\\33\overline{)825}\\\end{array}
Since 8 is less than 33, use the next digit 2 from dividend 825 and add 0 to the quotient
\begin{array}{l}\phantom{33)}0\phantom{3}\\33\overline{)825}\\\end{array}
Use the 2^{nd} digit 2 from dividend 825
\begin{array}{l}\phantom{33)}02\phantom{4}\\33\overline{)825}\\\phantom{33)}\underline{\phantom{}66\phantom{9}}\\\phantom{33)}16\\\end{array}
Find closest multiple of 33 to 82. We see that 2 \times 33 = 66 is the nearest. Now subtract 66 from 82 to get reminder 16. Add 2 to quotient.
\begin{array}{l}\phantom{33)}02\phantom{5}\\33\overline{)825}\\\phantom{33)}\underline{\phantom{}66\phantom{9}}\\\phantom{33)}165\\\end{array}
Use the 3^{rd} digit 5 from dividend 825
\begin{array}{l}\phantom{33)}025\phantom{6}\\33\overline{)825}\\\phantom{33)}\underline{\phantom{}66\phantom{9}}\\\phantom{33)}165\\\phantom{33)}\underline{\phantom{}165\phantom{}}\\\phantom{33)999}0\\\end{array}
Find closest multiple of 33 to 165. We see that 5 \times 33 = 165 is the nearest. Now subtract 165 from 165 to get reminder 0. Add 5 to quotient.
\text{Quotient: }25 \text{Reminder: }0
Since 0 is less than 33, stop the division. The reminder is 0. The topmost line 025 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 25.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}