Evaluate
\frac{137}{6}\approx 22.833333333
Factor
\frac{137}{2 \cdot 3} = 22\frac{5}{6} = 22.833333333333332
Share
Copied to clipboard
\begin{array}{l}\phantom{36)}\phantom{1}\\36\overline{)822}\\\end{array}
Use the 1^{st} digit 8 from dividend 822
\begin{array}{l}\phantom{36)}0\phantom{2}\\36\overline{)822}\\\end{array}
Since 8 is less than 36, use the next digit 2 from dividend 822 and add 0 to the quotient
\begin{array}{l}\phantom{36)}0\phantom{3}\\36\overline{)822}\\\end{array}
Use the 2^{nd} digit 2 from dividend 822
\begin{array}{l}\phantom{36)}02\phantom{4}\\36\overline{)822}\\\phantom{36)}\underline{\phantom{}72\phantom{9}}\\\phantom{36)}10\\\end{array}
Find closest multiple of 36 to 82. We see that 2 \times 36 = 72 is the nearest. Now subtract 72 from 82 to get reminder 10. Add 2 to quotient.
\begin{array}{l}\phantom{36)}02\phantom{5}\\36\overline{)822}\\\phantom{36)}\underline{\phantom{}72\phantom{9}}\\\phantom{36)}102\\\end{array}
Use the 3^{rd} digit 2 from dividend 822
\begin{array}{l}\phantom{36)}022\phantom{6}\\36\overline{)822}\\\phantom{36)}\underline{\phantom{}72\phantom{9}}\\\phantom{36)}102\\\phantom{36)}\underline{\phantom{9}72\phantom{}}\\\phantom{36)9}30\\\end{array}
Find closest multiple of 36 to 102. We see that 2 \times 36 = 72 is the nearest. Now subtract 72 from 102 to get reminder 30. Add 2 to quotient.
\text{Quotient: }22 \text{Reminder: }30
Since 30 is less than 36, stop the division. The reminder is 30. The topmost line 022 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 22.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}