Evaluate
\frac{41}{26}\approx 1.576923077
Factor
\frac{41}{2 \cdot 13} = 1\frac{15}{26} = 1.5769230769230769
Share
Copied to clipboard
\begin{array}{l}\phantom{52)}\phantom{1}\\52\overline{)82}\\\end{array}
Use the 1^{st} digit 8 from dividend 82
\begin{array}{l}\phantom{52)}0\phantom{2}\\52\overline{)82}\\\end{array}
Since 8 is less than 52, use the next digit 2 from dividend 82 and add 0 to the quotient
\begin{array}{l}\phantom{52)}0\phantom{3}\\52\overline{)82}\\\end{array}
Use the 2^{nd} digit 2 from dividend 82
\begin{array}{l}\phantom{52)}01\phantom{4}\\52\overline{)82}\\\phantom{52)}\underline{\phantom{}52\phantom{}}\\\phantom{52)}30\\\end{array}
Find closest multiple of 52 to 82. We see that 1 \times 52 = 52 is the nearest. Now subtract 52 from 82 to get reminder 30. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }30
Since 30 is less than 52, stop the division. The reminder is 30. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}