Evaluate
\frac{82}{33}\approx 2.484848485
Factor
\frac{2 \cdot 41}{3 \cdot 11} = 2\frac{16}{33} = 2.484848484848485
Share
Copied to clipboard
\begin{array}{l}\phantom{33)}\phantom{1}\\33\overline{)82}\\\end{array}
Use the 1^{st} digit 8 from dividend 82
\begin{array}{l}\phantom{33)}0\phantom{2}\\33\overline{)82}\\\end{array}
Since 8 is less than 33, use the next digit 2 from dividend 82 and add 0 to the quotient
\begin{array}{l}\phantom{33)}0\phantom{3}\\33\overline{)82}\\\end{array}
Use the 2^{nd} digit 2 from dividend 82
\begin{array}{l}\phantom{33)}02\phantom{4}\\33\overline{)82}\\\phantom{33)}\underline{\phantom{}66\phantom{}}\\\phantom{33)}16\\\end{array}
Find closest multiple of 33 to 82. We see that 2 \times 33 = 66 is the nearest. Now subtract 66 from 82 to get reminder 16. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }16
Since 16 is less than 33, stop the division. The reminder is 16. The topmost line 02 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}