Evaluate
\frac{328}{101}\approx 3.247524752
Factor
\frac{2 ^ {3} \cdot 41}{101} = 3\frac{25}{101} = 3.2475247524752477
Share
Copied to clipboard
\frac{82}{25+\frac{5}{20}}
Calculate 5 to the power of 2 and get 25.
\frac{82}{25+\frac{1}{4}}
Reduce the fraction \frac{5}{20} to lowest terms by extracting and canceling out 5.
\frac{82}{\frac{100}{4}+\frac{1}{4}}
Convert 25 to fraction \frac{100}{4}.
\frac{82}{\frac{100+1}{4}}
Since \frac{100}{4} and \frac{1}{4} have the same denominator, add them by adding their numerators.
\frac{82}{\frac{101}{4}}
Add 100 and 1 to get 101.
82\times \frac{4}{101}
Divide 82 by \frac{101}{4} by multiplying 82 by the reciprocal of \frac{101}{4}.
\frac{82\times 4}{101}
Express 82\times \frac{4}{101} as a single fraction.
\frac{328}{101}
Multiply 82 and 4 to get 328.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}