Evaluate
\frac{815}{24}\approx 33.958333333
Factor
\frac{5 \cdot 163}{2 ^ {3} \cdot 3} = 33\frac{23}{24} = 33.958333333333336
Share
Copied to clipboard
\begin{array}{l}\phantom{24)}\phantom{1}\\24\overline{)815}\\\end{array}
Use the 1^{st} digit 8 from dividend 815
\begin{array}{l}\phantom{24)}0\phantom{2}\\24\overline{)815}\\\end{array}
Since 8 is less than 24, use the next digit 1 from dividend 815 and add 0 to the quotient
\begin{array}{l}\phantom{24)}0\phantom{3}\\24\overline{)815}\\\end{array}
Use the 2^{nd} digit 1 from dividend 815
\begin{array}{l}\phantom{24)}03\phantom{4}\\24\overline{)815}\\\phantom{24)}\underline{\phantom{}72\phantom{9}}\\\phantom{24)9}9\\\end{array}
Find closest multiple of 24 to 81. We see that 3 \times 24 = 72 is the nearest. Now subtract 72 from 81 to get reminder 9. Add 3 to quotient.
\begin{array}{l}\phantom{24)}03\phantom{5}\\24\overline{)815}\\\phantom{24)}\underline{\phantom{}72\phantom{9}}\\\phantom{24)9}95\\\end{array}
Use the 3^{rd} digit 5 from dividend 815
\begin{array}{l}\phantom{24)}033\phantom{6}\\24\overline{)815}\\\phantom{24)}\underline{\phantom{}72\phantom{9}}\\\phantom{24)9}95\\\phantom{24)}\underline{\phantom{9}72\phantom{}}\\\phantom{24)9}23\\\end{array}
Find closest multiple of 24 to 95. We see that 3 \times 24 = 72 is the nearest. Now subtract 72 from 95 to get reminder 23. Add 3 to quotient.
\text{Quotient: }33 \text{Reminder: }23
Since 23 is less than 24, stop the division. The reminder is 23. The topmost line 033 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 33.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}