Evaluate
\frac{67}{40}=1.675
Factor
\frac{67}{2 ^ {3} \cdot 5} = 1\frac{27}{40} = 1.675
Share
Copied to clipboard
\begin{array}{l}\phantom{480)}\phantom{1}\\480\overline{)804}\\\end{array}
Use the 1^{st} digit 8 from dividend 804
\begin{array}{l}\phantom{480)}0\phantom{2}\\480\overline{)804}\\\end{array}
Since 8 is less than 480, use the next digit 0 from dividend 804 and add 0 to the quotient
\begin{array}{l}\phantom{480)}0\phantom{3}\\480\overline{)804}\\\end{array}
Use the 2^{nd} digit 0 from dividend 804
\begin{array}{l}\phantom{480)}00\phantom{4}\\480\overline{)804}\\\end{array}
Since 80 is less than 480, use the next digit 4 from dividend 804 and add 0 to the quotient
\begin{array}{l}\phantom{480)}00\phantom{5}\\480\overline{)804}\\\end{array}
Use the 3^{rd} digit 4 from dividend 804
\begin{array}{l}\phantom{480)}001\phantom{6}\\480\overline{)804}\\\phantom{480)}\underline{\phantom{}480\phantom{}}\\\phantom{480)}324\\\end{array}
Find closest multiple of 480 to 804. We see that 1 \times 480 = 480 is the nearest. Now subtract 480 from 804 to get reminder 324. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }324
Since 324 is less than 480, stop the division. The reminder is 324. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}