Solve for x
x = \frac{640}{31} = 20\frac{20}{31} \approx 20.64516129
Graph
Share
Copied to clipboard
-\left(800000+90000x-35000x\right)=\left(1000x-40000\right)\times 100
Variable x cannot be equal to 40 since division by zero is not defined. Multiply both sides of the equation by 5000\left(x-40\right), the least common multiple of 200000+10000x-15000x,5.
-\left(800000+55000x\right)=\left(1000x-40000\right)\times 100
Combine 90000x and -35000x to get 55000x.
-800000-55000x=\left(1000x-40000\right)\times 100
To find the opposite of 800000+55000x, find the opposite of each term.
-800000-55000x=100000x-4000000
Use the distributive property to multiply 1000x-40000 by 100.
-800000-55000x-100000x=-4000000
Subtract 100000x from both sides.
-800000-155000x=-4000000
Combine -55000x and -100000x to get -155000x.
-155000x=-4000000+800000
Add 800000 to both sides.
-155000x=-3200000
Add -4000000 and 800000 to get -3200000.
x=\frac{-3200000}{-155000}
Divide both sides by -155000.
x=\frac{640}{31}
Reduce the fraction \frac{-3200000}{-155000} to lowest terms by extracting and canceling out -5000.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}