Evaluate
\frac{31}{2}=15.5
Factor
\frac{31}{2} = 15\frac{1}{2} = 15.5
Share
Copied to clipboard
\frac{8\left(\frac{1}{32}-1\right)}{\frac{1}{2}-1}
Calculate \frac{1}{2} to the power of 5 and get \frac{1}{32}.
\frac{8\left(\frac{1}{32}-\frac{32}{32}\right)}{\frac{1}{2}-1}
Convert 1 to fraction \frac{32}{32}.
\frac{8\times \frac{1-32}{32}}{\frac{1}{2}-1}
Since \frac{1}{32} and \frac{32}{32} have the same denominator, subtract them by subtracting their numerators.
\frac{8\left(-\frac{31}{32}\right)}{\frac{1}{2}-1}
Subtract 32 from 1 to get -31.
\frac{\frac{8\left(-31\right)}{32}}{\frac{1}{2}-1}
Express 8\left(-\frac{31}{32}\right) as a single fraction.
\frac{\frac{-248}{32}}{\frac{1}{2}-1}
Multiply 8 and -31 to get -248.
\frac{-\frac{31}{4}}{\frac{1}{2}-1}
Reduce the fraction \frac{-248}{32} to lowest terms by extracting and canceling out 8.
\frac{-\frac{31}{4}}{\frac{1}{2}-\frac{2}{2}}
Convert 1 to fraction \frac{2}{2}.
\frac{-\frac{31}{4}}{\frac{1-2}{2}}
Since \frac{1}{2} and \frac{2}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{31}{4}}{-\frac{1}{2}}
Subtract 2 from 1 to get -1.
-\frac{31}{4}\left(-2\right)
Divide -\frac{31}{4} by -\frac{1}{2} by multiplying -\frac{31}{4} by the reciprocal of -\frac{1}{2}.
\frac{-31\left(-2\right)}{4}
Express -\frac{31}{4}\left(-2\right) as a single fraction.
\frac{62}{4}
Multiply -31 and -2 to get 62.
\frac{31}{2}
Reduce the fraction \frac{62}{4} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}