Evaluate
\frac{7}{12}\approx 0.583333333
Factor
\frac{7}{2 ^ {2} \cdot 3} = 0.5833333333333334
Share
Copied to clipboard
\frac{8\times \frac{5\sqrt{41}}{\left(\sqrt{41}\right)^{2}}-3\times \frac{4}{\sqrt{41}}}{8\times \frac{5}{\sqrt{41}}+2\times \frac{4}{\sqrt{41}}}
Rationalize the denominator of \frac{5}{\sqrt{41}} by multiplying numerator and denominator by \sqrt{41}.
\frac{8\times \frac{5\sqrt{41}}{41}-3\times \frac{4}{\sqrt{41}}}{8\times \frac{5}{\sqrt{41}}+2\times \frac{4}{\sqrt{41}}}
The square of \sqrt{41} is 41.
\frac{\frac{8\times 5\sqrt{41}}{41}-3\times \frac{4}{\sqrt{41}}}{8\times \frac{5}{\sqrt{41}}+2\times \frac{4}{\sqrt{41}}}
Express 8\times \frac{5\sqrt{41}}{41} as a single fraction.
\frac{\frac{8\times 5\sqrt{41}}{41}-3\times \frac{4\sqrt{41}}{\left(\sqrt{41}\right)^{2}}}{8\times \frac{5}{\sqrt{41}}+2\times \frac{4}{\sqrt{41}}}
Rationalize the denominator of \frac{4}{\sqrt{41}} by multiplying numerator and denominator by \sqrt{41}.
\frac{\frac{8\times 5\sqrt{41}}{41}-3\times \frac{4\sqrt{41}}{41}}{8\times \frac{5}{\sqrt{41}}+2\times \frac{4}{\sqrt{41}}}
The square of \sqrt{41} is 41.
\frac{\frac{8\times 5\sqrt{41}}{41}-\frac{3\times 4\sqrt{41}}{41}}{8\times \frac{5}{\sqrt{41}}+2\times \frac{4}{\sqrt{41}}}
Express 3\times \frac{4\sqrt{41}}{41} as a single fraction.
\frac{\frac{8\times 5\sqrt{41}}{41}-\frac{12\sqrt{41}}{41}}{8\times \frac{5}{\sqrt{41}}+2\times \frac{4}{\sqrt{41}}}
Multiply 3 and 4 to get 12.
\frac{\frac{8\times 5\sqrt{41}-12\sqrt{41}}{41}}{8\times \frac{5}{\sqrt{41}}+2\times \frac{4}{\sqrt{41}}}
Since \frac{8\times 5\sqrt{41}}{41} and \frac{12\sqrt{41}}{41} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{40\sqrt{41}-12\sqrt{41}}{41}}{8\times \frac{5}{\sqrt{41}}+2\times \frac{4}{\sqrt{41}}}
Do the multiplications in 8\times 5\sqrt{41}-12\sqrt{41}.
\frac{\frac{28\sqrt{41}}{41}}{8\times \frac{5}{\sqrt{41}}+2\times \frac{4}{\sqrt{41}}}
Do the calculations in 40\sqrt{41}-12\sqrt{41}.
\frac{\frac{28\sqrt{41}}{41}}{8\times \frac{5\sqrt{41}}{\left(\sqrt{41}\right)^{2}}+2\times \frac{4}{\sqrt{41}}}
Rationalize the denominator of \frac{5}{\sqrt{41}} by multiplying numerator and denominator by \sqrt{41}.
\frac{\frac{28\sqrt{41}}{41}}{8\times \frac{5\sqrt{41}}{41}+2\times \frac{4}{\sqrt{41}}}
The square of \sqrt{41} is 41.
\frac{\frac{28\sqrt{41}}{41}}{\frac{8\times 5\sqrt{41}}{41}+2\times \frac{4}{\sqrt{41}}}
Express 8\times \frac{5\sqrt{41}}{41} as a single fraction.
\frac{\frac{28\sqrt{41}}{41}}{\frac{8\times 5\sqrt{41}}{41}+2\times \frac{4\sqrt{41}}{\left(\sqrt{41}\right)^{2}}}
Rationalize the denominator of \frac{4}{\sqrt{41}} by multiplying numerator and denominator by \sqrt{41}.
\frac{\frac{28\sqrt{41}}{41}}{\frac{8\times 5\sqrt{41}}{41}+2\times \frac{4\sqrt{41}}{41}}
The square of \sqrt{41} is 41.
\frac{\frac{28\sqrt{41}}{41}}{\frac{8\times 5\sqrt{41}}{41}+\frac{2\times 4\sqrt{41}}{41}}
Express 2\times \frac{4\sqrt{41}}{41} as a single fraction.
\frac{\frac{28\sqrt{41}}{41}}{\frac{8\times 5\sqrt{41}+2\times 4\sqrt{41}}{41}}
Since \frac{8\times 5\sqrt{41}}{41} and \frac{2\times 4\sqrt{41}}{41} have the same denominator, add them by adding their numerators.
\frac{\frac{28\sqrt{41}}{41}}{\frac{40\sqrt{41}+8\sqrt{41}}{41}}
Do the multiplications in 8\times 5\sqrt{41}+2\times 4\sqrt{41}.
\frac{\frac{28\sqrt{41}}{41}}{\frac{48\sqrt{41}}{41}}
Do the calculations in 40\sqrt{41}+8\sqrt{41}.
\frac{28\sqrt{41}\times 41}{41\times 48\sqrt{41}}
Divide \frac{28\sqrt{41}}{41} by \frac{48\sqrt{41}}{41} by multiplying \frac{28\sqrt{41}}{41} by the reciprocal of \frac{48\sqrt{41}}{41}.
\frac{7}{12}
Cancel out 4\times 41\sqrt{41} in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}