Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{8\times \frac{5\sqrt{41}}{\left(\sqrt{41}\right)^{2}}-3\times \frac{4}{\sqrt{41}}}{8\times \frac{5}{\sqrt{41}}+2\times \frac{4}{\sqrt{41}}}
Rationalize the denominator of \frac{5}{\sqrt{41}} by multiplying numerator and denominator by \sqrt{41}.
\frac{8\times \frac{5\sqrt{41}}{41}-3\times \frac{4}{\sqrt{41}}}{8\times \frac{5}{\sqrt{41}}+2\times \frac{4}{\sqrt{41}}}
The square of \sqrt{41} is 41.
\frac{\frac{8\times 5\sqrt{41}}{41}-3\times \frac{4}{\sqrt{41}}}{8\times \frac{5}{\sqrt{41}}+2\times \frac{4}{\sqrt{41}}}
Express 8\times \frac{5\sqrt{41}}{41} as a single fraction.
\frac{\frac{8\times 5\sqrt{41}}{41}-3\times \frac{4\sqrt{41}}{\left(\sqrt{41}\right)^{2}}}{8\times \frac{5}{\sqrt{41}}+2\times \frac{4}{\sqrt{41}}}
Rationalize the denominator of \frac{4}{\sqrt{41}} by multiplying numerator and denominator by \sqrt{41}.
\frac{\frac{8\times 5\sqrt{41}}{41}-3\times \frac{4\sqrt{41}}{41}}{8\times \frac{5}{\sqrt{41}}+2\times \frac{4}{\sqrt{41}}}
The square of \sqrt{41} is 41.
\frac{\frac{8\times 5\sqrt{41}}{41}-\frac{3\times 4\sqrt{41}}{41}}{8\times \frac{5}{\sqrt{41}}+2\times \frac{4}{\sqrt{41}}}
Express 3\times \frac{4\sqrt{41}}{41} as a single fraction.
\frac{\frac{8\times 5\sqrt{41}}{41}-\frac{12\sqrt{41}}{41}}{8\times \frac{5}{\sqrt{41}}+2\times \frac{4}{\sqrt{41}}}
Multiply 3 and 4 to get 12.
\frac{\frac{8\times 5\sqrt{41}-12\sqrt{41}}{41}}{8\times \frac{5}{\sqrt{41}}+2\times \frac{4}{\sqrt{41}}}
Since \frac{8\times 5\sqrt{41}}{41} and \frac{12\sqrt{41}}{41} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{40\sqrt{41}-12\sqrt{41}}{41}}{8\times \frac{5}{\sqrt{41}}+2\times \frac{4}{\sqrt{41}}}
Do the multiplications in 8\times 5\sqrt{41}-12\sqrt{41}.
\frac{\frac{28\sqrt{41}}{41}}{8\times \frac{5}{\sqrt{41}}+2\times \frac{4}{\sqrt{41}}}
Do the calculations in 40\sqrt{41}-12\sqrt{41}.
\frac{\frac{28\sqrt{41}}{41}}{8\times \frac{5\sqrt{41}}{\left(\sqrt{41}\right)^{2}}+2\times \frac{4}{\sqrt{41}}}
Rationalize the denominator of \frac{5}{\sqrt{41}} by multiplying numerator and denominator by \sqrt{41}.
\frac{\frac{28\sqrt{41}}{41}}{8\times \frac{5\sqrt{41}}{41}+2\times \frac{4}{\sqrt{41}}}
The square of \sqrt{41} is 41.
\frac{\frac{28\sqrt{41}}{41}}{\frac{8\times 5\sqrt{41}}{41}+2\times \frac{4}{\sqrt{41}}}
Express 8\times \frac{5\sqrt{41}}{41} as a single fraction.
\frac{\frac{28\sqrt{41}}{41}}{\frac{8\times 5\sqrt{41}}{41}+2\times \frac{4\sqrt{41}}{\left(\sqrt{41}\right)^{2}}}
Rationalize the denominator of \frac{4}{\sqrt{41}} by multiplying numerator and denominator by \sqrt{41}.
\frac{\frac{28\sqrt{41}}{41}}{\frac{8\times 5\sqrt{41}}{41}+2\times \frac{4\sqrt{41}}{41}}
The square of \sqrt{41} is 41.
\frac{\frac{28\sqrt{41}}{41}}{\frac{8\times 5\sqrt{41}}{41}+\frac{2\times 4\sqrt{41}}{41}}
Express 2\times \frac{4\sqrt{41}}{41} as a single fraction.
\frac{\frac{28\sqrt{41}}{41}}{\frac{8\times 5\sqrt{41}+2\times 4\sqrt{41}}{41}}
Since \frac{8\times 5\sqrt{41}}{41} and \frac{2\times 4\sqrt{41}}{41} have the same denominator, add them by adding their numerators.
\frac{\frac{28\sqrt{41}}{41}}{\frac{40\sqrt{41}+8\sqrt{41}}{41}}
Do the multiplications in 8\times 5\sqrt{41}+2\times 4\sqrt{41}.
\frac{\frac{28\sqrt{41}}{41}}{\frac{48\sqrt{41}}{41}}
Do the calculations in 40\sqrt{41}+8\sqrt{41}.
\frac{28\sqrt{41}\times 41}{41\times 48\sqrt{41}}
Divide \frac{28\sqrt{41}}{41} by \frac{48\sqrt{41}}{41} by multiplying \frac{28\sqrt{41}}{41} by the reciprocal of \frac{48\sqrt{41}}{41}.
\frac{7}{12}
Cancel out 4\times 41\sqrt{41} in both numerator and denominator.