Evaluate
-\frac{\sqrt{26}}{26}\approx -0.196116135
Share
Copied to clipboard
\frac{21-25}{2\times 2\sqrt{2}\sqrt{13}}
Add 8 and 13 to get 21.
\frac{-4}{2\times 2\sqrt{2}\sqrt{13}}
Subtract 25 from 21 to get -4.
\frac{-4}{4\sqrt{2}\sqrt{13}}
Multiply 2 and 2 to get 4.
\frac{-4}{4\sqrt{26}}
To multiply \sqrt{2} and \sqrt{13}, multiply the numbers under the square root.
\frac{-4\sqrt{26}}{4\left(\sqrt{26}\right)^{2}}
Rationalize the denominator of \frac{-4}{4\sqrt{26}} by multiplying numerator and denominator by \sqrt{26}.
\frac{-4\sqrt{26}}{4\times 26}
The square of \sqrt{26} is 26.
\frac{-\sqrt{26}}{26}
Cancel out 4 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}