Evaluate
\frac{1}{2}=0.5
Factor
\frac{1}{2} = 0.5
Share
Copied to clipboard
\frac{8\times 3^{15}-9\times 3^{12}}{46\times 3^{14}}
To multiply powers of the same base, add their exponents. Add 4 and 11 to get 15.
\frac{8\times 14348907-9\times 3^{12}}{46\times 3^{14}}
Calculate 3 to the power of 15 and get 14348907.
\frac{114791256-9\times 3^{12}}{46\times 3^{14}}
Multiply 8 and 14348907 to get 114791256.
\frac{114791256-9\times 531441}{46\times 3^{14}}
Calculate 3 to the power of 12 and get 531441.
\frac{114791256-4782969}{46\times 3^{14}}
Multiply 9 and 531441 to get 4782969.
\frac{110008287}{46\times 3^{14}}
Subtract 4782969 from 114791256 to get 110008287.
\frac{110008287}{46\times 4782969}
Calculate 3 to the power of 14 and get 4782969.
\frac{110008287}{220016574}
Multiply 46 and 4782969 to get 220016574.
\frac{1}{2}
Reduce the fraction \frac{110008287}{220016574} to lowest terms by extracting and canceling out 110008287.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}