Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{8\sqrt{5}\left(6\sqrt{2}+7\sqrt{10}\right)}{\left(6\sqrt{2}-7\sqrt{10}\right)\left(6\sqrt{2}+7\sqrt{10}\right)}
Rationalize the denominator of \frac{8\sqrt{5}}{6\sqrt{2}-7\sqrt{10}} by multiplying numerator and denominator by 6\sqrt{2}+7\sqrt{10}.
\frac{8\sqrt{5}\left(6\sqrt{2}+7\sqrt{10}\right)}{\left(6\sqrt{2}\right)^{2}-\left(-7\sqrt{10}\right)^{2}}
Consider \left(6\sqrt{2}-7\sqrt{10}\right)\left(6\sqrt{2}+7\sqrt{10}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{8\sqrt{5}\left(6\sqrt{2}+7\sqrt{10}\right)}{6^{2}\left(\sqrt{2}\right)^{2}-\left(-7\sqrt{10}\right)^{2}}
Expand \left(6\sqrt{2}\right)^{2}.
\frac{8\sqrt{5}\left(6\sqrt{2}+7\sqrt{10}\right)}{36\left(\sqrt{2}\right)^{2}-\left(-7\sqrt{10}\right)^{2}}
Calculate 6 to the power of 2 and get 36.
\frac{8\sqrt{5}\left(6\sqrt{2}+7\sqrt{10}\right)}{36\times 2-\left(-7\sqrt{10}\right)^{2}}
The square of \sqrt{2} is 2.
\frac{8\sqrt{5}\left(6\sqrt{2}+7\sqrt{10}\right)}{72-\left(-7\sqrt{10}\right)^{2}}
Multiply 36 and 2 to get 72.
\frac{8\sqrt{5}\left(6\sqrt{2}+7\sqrt{10}\right)}{72-\left(-7\right)^{2}\left(\sqrt{10}\right)^{2}}
Expand \left(-7\sqrt{10}\right)^{2}.
\frac{8\sqrt{5}\left(6\sqrt{2}+7\sqrt{10}\right)}{72-49\left(\sqrt{10}\right)^{2}}
Calculate -7 to the power of 2 and get 49.
\frac{8\sqrt{5}\left(6\sqrt{2}+7\sqrt{10}\right)}{72-49\times 10}
The square of \sqrt{10} is 10.
\frac{8\sqrt{5}\left(6\sqrt{2}+7\sqrt{10}\right)}{72-490}
Multiply 49 and 10 to get 490.
\frac{8\sqrt{5}\left(6\sqrt{2}+7\sqrt{10}\right)}{-418}
Subtract 490 from 72 to get -418.
-\frac{4}{209}\sqrt{5}\left(6\sqrt{2}+7\sqrt{10}\right)
Divide 8\sqrt{5}\left(6\sqrt{2}+7\sqrt{10}\right) by -418 to get -\frac{4}{209}\sqrt{5}\left(6\sqrt{2}+7\sqrt{10}\right).
-\frac{4}{209}\sqrt{5}\times 6\sqrt{2}-\frac{4}{209}\sqrt{5}\times 7\sqrt{10}
Use the distributive property to multiply -\frac{4}{209}\sqrt{5} by 6\sqrt{2}+7\sqrt{10}.
\frac{-4\times 6}{209}\sqrt{5}\sqrt{2}-\frac{4}{209}\sqrt{5}\times 7\sqrt{10}
Express -\frac{4}{209}\times 6 as a single fraction.
\frac{-24}{209}\sqrt{5}\sqrt{2}-\frac{4}{209}\sqrt{5}\times 7\sqrt{10}
Multiply -4 and 6 to get -24.
-\frac{24}{209}\sqrt{5}\sqrt{2}-\frac{4}{209}\sqrt{5}\times 7\sqrt{10}
Fraction \frac{-24}{209} can be rewritten as -\frac{24}{209} by extracting the negative sign.
-\frac{24}{209}\sqrt{10}-\frac{4}{209}\sqrt{5}\times 7\sqrt{10}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
-\frac{24}{209}\sqrt{10}-\frac{4}{209}\sqrt{5}\times 7\sqrt{5}\sqrt{2}
Factor 10=5\times 2. Rewrite the square root of the product \sqrt{5\times 2} as the product of square roots \sqrt{5}\sqrt{2}.
-\frac{24}{209}\sqrt{10}-\frac{4}{209}\times 5\times 7\sqrt{2}
Multiply \sqrt{5} and \sqrt{5} to get 5.
-\frac{24}{209}\sqrt{10}+\frac{-4\times 5}{209}\times 7\sqrt{2}
Express -\frac{4}{209}\times 5 as a single fraction.
-\frac{24}{209}\sqrt{10}+\frac{-20}{209}\times 7\sqrt{2}
Multiply -4 and 5 to get -20.
-\frac{24}{209}\sqrt{10}-\frac{20}{209}\times 7\sqrt{2}
Fraction \frac{-20}{209} can be rewritten as -\frac{20}{209} by extracting the negative sign.
-\frac{24}{209}\sqrt{10}+\frac{-20\times 7}{209}\sqrt{2}
Express -\frac{20}{209}\times 7 as a single fraction.
-\frac{24}{209}\sqrt{10}+\frac{-140}{209}\sqrt{2}
Multiply -20 and 7 to get -140.
-\frac{24}{209}\sqrt{10}-\frac{140}{209}\sqrt{2}
Fraction \frac{-140}{209} can be rewritten as -\frac{140}{209} by extracting the negative sign.