Evaluate
\frac{-24\sqrt{10}-140\sqrt{2}}{209}\approx -1.310452453
Share
Copied to clipboard
\frac{8\sqrt{5}\left(6\sqrt{2}+7\sqrt{10}\right)}{\left(6\sqrt{2}-7\sqrt{10}\right)\left(6\sqrt{2}+7\sqrt{10}\right)}
Rationalize the denominator of \frac{8\sqrt{5}}{6\sqrt{2}-7\sqrt{10}} by multiplying numerator and denominator by 6\sqrt{2}+7\sqrt{10}.
\frac{8\sqrt{5}\left(6\sqrt{2}+7\sqrt{10}\right)}{\left(6\sqrt{2}\right)^{2}-\left(-7\sqrt{10}\right)^{2}}
Consider \left(6\sqrt{2}-7\sqrt{10}\right)\left(6\sqrt{2}+7\sqrt{10}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{8\sqrt{5}\left(6\sqrt{2}+7\sqrt{10}\right)}{6^{2}\left(\sqrt{2}\right)^{2}-\left(-7\sqrt{10}\right)^{2}}
Expand \left(6\sqrt{2}\right)^{2}.
\frac{8\sqrt{5}\left(6\sqrt{2}+7\sqrt{10}\right)}{36\left(\sqrt{2}\right)^{2}-\left(-7\sqrt{10}\right)^{2}}
Calculate 6 to the power of 2 and get 36.
\frac{8\sqrt{5}\left(6\sqrt{2}+7\sqrt{10}\right)}{36\times 2-\left(-7\sqrt{10}\right)^{2}}
The square of \sqrt{2} is 2.
\frac{8\sqrt{5}\left(6\sqrt{2}+7\sqrt{10}\right)}{72-\left(-7\sqrt{10}\right)^{2}}
Multiply 36 and 2 to get 72.
\frac{8\sqrt{5}\left(6\sqrt{2}+7\sqrt{10}\right)}{72-\left(-7\right)^{2}\left(\sqrt{10}\right)^{2}}
Expand \left(-7\sqrt{10}\right)^{2}.
\frac{8\sqrt{5}\left(6\sqrt{2}+7\sqrt{10}\right)}{72-49\left(\sqrt{10}\right)^{2}}
Calculate -7 to the power of 2 and get 49.
\frac{8\sqrt{5}\left(6\sqrt{2}+7\sqrt{10}\right)}{72-49\times 10}
The square of \sqrt{10} is 10.
\frac{8\sqrt{5}\left(6\sqrt{2}+7\sqrt{10}\right)}{72-490}
Multiply 49 and 10 to get 490.
\frac{8\sqrt{5}\left(6\sqrt{2}+7\sqrt{10}\right)}{-418}
Subtract 490 from 72 to get -418.
-\frac{4}{209}\sqrt{5}\left(6\sqrt{2}+7\sqrt{10}\right)
Divide 8\sqrt{5}\left(6\sqrt{2}+7\sqrt{10}\right) by -418 to get -\frac{4}{209}\sqrt{5}\left(6\sqrt{2}+7\sqrt{10}\right).
-\frac{4}{209}\sqrt{5}\times 6\sqrt{2}-\frac{4}{209}\sqrt{5}\times 7\sqrt{10}
Use the distributive property to multiply -\frac{4}{209}\sqrt{5} by 6\sqrt{2}+7\sqrt{10}.
\frac{-4\times 6}{209}\sqrt{5}\sqrt{2}-\frac{4}{209}\sqrt{5}\times 7\sqrt{10}
Express -\frac{4}{209}\times 6 as a single fraction.
\frac{-24}{209}\sqrt{5}\sqrt{2}-\frac{4}{209}\sqrt{5}\times 7\sqrt{10}
Multiply -4 and 6 to get -24.
-\frac{24}{209}\sqrt{5}\sqrt{2}-\frac{4}{209}\sqrt{5}\times 7\sqrt{10}
Fraction \frac{-24}{209} can be rewritten as -\frac{24}{209} by extracting the negative sign.
-\frac{24}{209}\sqrt{10}-\frac{4}{209}\sqrt{5}\times 7\sqrt{10}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
-\frac{24}{209}\sqrt{10}-\frac{4}{209}\sqrt{5}\times 7\sqrt{5}\sqrt{2}
Factor 10=5\times 2. Rewrite the square root of the product \sqrt{5\times 2} as the product of square roots \sqrt{5}\sqrt{2}.
-\frac{24}{209}\sqrt{10}-\frac{4}{209}\times 5\times 7\sqrt{2}
Multiply \sqrt{5} and \sqrt{5} to get 5.
-\frac{24}{209}\sqrt{10}+\frac{-4\times 5}{209}\times 7\sqrt{2}
Express -\frac{4}{209}\times 5 as a single fraction.
-\frac{24}{209}\sqrt{10}+\frac{-20}{209}\times 7\sqrt{2}
Multiply -4 and 5 to get -20.
-\frac{24}{209}\sqrt{10}-\frac{20}{209}\times 7\sqrt{2}
Fraction \frac{-20}{209} can be rewritten as -\frac{20}{209} by extracting the negative sign.
-\frac{24}{209}\sqrt{10}+\frac{-20\times 7}{209}\sqrt{2}
Express -\frac{20}{209}\times 7 as a single fraction.
-\frac{24}{209}\sqrt{10}+\frac{-140}{209}\sqrt{2}
Multiply -20 and 7 to get -140.
-\frac{24}{209}\sqrt{10}-\frac{140}{209}\sqrt{2}
Fraction \frac{-140}{209} can be rewritten as -\frac{140}{209} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}