Solve for x
x=\frac{\sqrt{865}}{10}-\frac{3}{2}\approx 1.441088234
x=-\frac{\sqrt{865}}{10}-\frac{3}{2}\approx -4.441088234
Graph
Share
Copied to clipboard
\left(x+4\right)\times 8-x\times 3=5x\left(x+4\right)
Variable x cannot be equal to any of the values -4,0 since division by zero is not defined. Multiply both sides of the equation by x\left(x+4\right), the least common multiple of x,x+4.
8x+32-x\times 3=5x\left(x+4\right)
Use the distributive property to multiply x+4 by 8.
8x+32-x\times 3=5x^{2}+20x
Use the distributive property to multiply 5x by x+4.
8x+32-x\times 3-5x^{2}=20x
Subtract 5x^{2} from both sides.
8x+32-x\times 3-5x^{2}-20x=0
Subtract 20x from both sides.
-12x+32-x\times 3-5x^{2}=0
Combine 8x and -20x to get -12x.
-12x+32-3x-5x^{2}=0
Multiply -1 and 3 to get -3.
-15x+32-5x^{2}=0
Combine -12x and -3x to get -15x.
-5x^{2}-15x+32=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\left(-5\right)\times 32}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, -15 for b, and 32 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-15\right)±\sqrt{225-4\left(-5\right)\times 32}}{2\left(-5\right)}
Square -15.
x=\frac{-\left(-15\right)±\sqrt{225+20\times 32}}{2\left(-5\right)}
Multiply -4 times -5.
x=\frac{-\left(-15\right)±\sqrt{225+640}}{2\left(-5\right)}
Multiply 20 times 32.
x=\frac{-\left(-15\right)±\sqrt{865}}{2\left(-5\right)}
Add 225 to 640.
x=\frac{15±\sqrt{865}}{2\left(-5\right)}
The opposite of -15 is 15.
x=\frac{15±\sqrt{865}}{-10}
Multiply 2 times -5.
x=\frac{\sqrt{865}+15}{-10}
Now solve the equation x=\frac{15±\sqrt{865}}{-10} when ± is plus. Add 15 to \sqrt{865}.
x=-\frac{\sqrt{865}}{10}-\frac{3}{2}
Divide 15+\sqrt{865} by -10.
x=\frac{15-\sqrt{865}}{-10}
Now solve the equation x=\frac{15±\sqrt{865}}{-10} when ± is minus. Subtract \sqrt{865} from 15.
x=\frac{\sqrt{865}}{10}-\frac{3}{2}
Divide 15-\sqrt{865} by -10.
x=-\frac{\sqrt{865}}{10}-\frac{3}{2} x=\frac{\sqrt{865}}{10}-\frac{3}{2}
The equation is now solved.
\left(x+4\right)\times 8-x\times 3=5x\left(x+4\right)
Variable x cannot be equal to any of the values -4,0 since division by zero is not defined. Multiply both sides of the equation by x\left(x+4\right), the least common multiple of x,x+4.
8x+32-x\times 3=5x\left(x+4\right)
Use the distributive property to multiply x+4 by 8.
8x+32-x\times 3=5x^{2}+20x
Use the distributive property to multiply 5x by x+4.
8x+32-x\times 3-5x^{2}=20x
Subtract 5x^{2} from both sides.
8x+32-x\times 3-5x^{2}-20x=0
Subtract 20x from both sides.
-12x+32-x\times 3-5x^{2}=0
Combine 8x and -20x to get -12x.
-12x-x\times 3-5x^{2}=-32
Subtract 32 from both sides. Anything subtracted from zero gives its negation.
-12x-3x-5x^{2}=-32
Multiply -1 and 3 to get -3.
-15x-5x^{2}=-32
Combine -12x and -3x to get -15x.
-5x^{2}-15x=-32
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-5x^{2}-15x}{-5}=-\frac{32}{-5}
Divide both sides by -5.
x^{2}+\left(-\frac{15}{-5}\right)x=-\frac{32}{-5}
Dividing by -5 undoes the multiplication by -5.
x^{2}+3x=-\frac{32}{-5}
Divide -15 by -5.
x^{2}+3x=\frac{32}{5}
Divide -32 by -5.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=\frac{32}{5}+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+3x+\frac{9}{4}=\frac{32}{5}+\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+3x+\frac{9}{4}=\frac{173}{20}
Add \frac{32}{5} to \frac{9}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{2}\right)^{2}=\frac{173}{20}
Factor x^{2}+3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{173}{20}}
Take the square root of both sides of the equation.
x+\frac{3}{2}=\frac{\sqrt{865}}{10} x+\frac{3}{2}=-\frac{\sqrt{865}}{10}
Simplify.
x=\frac{\sqrt{865}}{10}-\frac{3}{2} x=-\frac{\sqrt{865}}{10}-\frac{3}{2}
Subtract \frac{3}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}