Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Share

\frac{8\left(8+8i\right)}{\left(8-8i\right)\left(8+8i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 8+8i.
\frac{8\left(8+8i\right)}{8^{2}-8^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{8\left(8+8i\right)}{128}
By definition, i^{2} is -1. Calculate the denominator.
\frac{8\times 8+8\times \left(8i\right)}{128}
Multiply 8 times 8+8i.
\frac{64+64i}{128}
Do the multiplications in 8\times 8+8\times \left(8i\right).
\frac{1}{2}+\frac{1}{2}i
Divide 64+64i by 128 to get \frac{1}{2}+\frac{1}{2}i.
Re(\frac{8\left(8+8i\right)}{\left(8-8i\right)\left(8+8i\right)})
Multiply both numerator and denominator of \frac{8}{8-8i} by the complex conjugate of the denominator, 8+8i.
Re(\frac{8\left(8+8i\right)}{8^{2}-8^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{8\left(8+8i\right)}{128})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{8\times 8+8\times \left(8i\right)}{128})
Multiply 8 times 8+8i.
Re(\frac{64+64i}{128})
Do the multiplications in 8\times 8+8\times \left(8i\right).
Re(\frac{1}{2}+\frac{1}{2}i)
Divide 64+64i by 128 to get \frac{1}{2}+\frac{1}{2}i.
\frac{1}{2}
The real part of \frac{1}{2}+\frac{1}{2}i is \frac{1}{2}.