Evaluate
\frac{1}{2}+\frac{1}{2}i=0.5+0.5i
Real Part
\frac{1}{2} = 0.5
Share
Copied to clipboard
\frac{8\left(8+8i\right)}{\left(8-8i\right)\left(8+8i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 8+8i.
\frac{8\left(8+8i\right)}{8^{2}-8^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{8\left(8+8i\right)}{128}
By definition, i^{2} is -1. Calculate the denominator.
\frac{8\times 8+8\times \left(8i\right)}{128}
Multiply 8 times 8+8i.
\frac{64+64i}{128}
Do the multiplications in 8\times 8+8\times \left(8i\right).
\frac{1}{2}+\frac{1}{2}i
Divide 64+64i by 128 to get \frac{1}{2}+\frac{1}{2}i.
Re(\frac{8\left(8+8i\right)}{\left(8-8i\right)\left(8+8i\right)})
Multiply both numerator and denominator of \frac{8}{8-8i} by the complex conjugate of the denominator, 8+8i.
Re(\frac{8\left(8+8i\right)}{8^{2}-8^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{8\left(8+8i\right)}{128})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{8\times 8+8\times \left(8i\right)}{128})
Multiply 8 times 8+8i.
Re(\frac{64+64i}{128})
Do the multiplications in 8\times 8+8\times \left(8i\right).
Re(\frac{1}{2}+\frac{1}{2}i)
Divide 64+64i by 128 to get \frac{1}{2}+\frac{1}{2}i.
\frac{1}{2}
The real part of \frac{1}{2}+\frac{1}{2}i is \frac{1}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}