Solve for y
y=3
Graph
Share
Copied to clipboard
\frac{4}{3}=\frac{2y+4}{7.5}
Reduce the fraction \frac{8}{6} to lowest terms by extracting and canceling out 2.
\frac{4}{3}=\frac{2y}{7.5}+\frac{4}{7.5}
Divide each term of 2y+4 by 7.5 to get \frac{2y}{7.5}+\frac{4}{7.5}.
\frac{4}{3}=\frac{4}{15}y+\frac{4}{7.5}
Divide 2y by 7.5 to get \frac{4}{15}y.
\frac{4}{3}=\frac{4}{15}y+\frac{40}{75}
Expand \frac{4}{7.5} by multiplying both numerator and the denominator by 10.
\frac{4}{3}=\frac{4}{15}y+\frac{8}{15}
Reduce the fraction \frac{40}{75} to lowest terms by extracting and canceling out 5.
\frac{4}{15}y+\frac{8}{15}=\frac{4}{3}
Swap sides so that all variable terms are on the left hand side.
\frac{4}{15}y=\frac{4}{3}-\frac{8}{15}
Subtract \frac{8}{15} from both sides.
\frac{4}{15}y=\frac{20}{15}-\frac{8}{15}
Least common multiple of 3 and 15 is 15. Convert \frac{4}{3} and \frac{8}{15} to fractions with denominator 15.
\frac{4}{15}y=\frac{20-8}{15}
Since \frac{20}{15} and \frac{8}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{4}{15}y=\frac{12}{15}
Subtract 8 from 20 to get 12.
\frac{4}{15}y=\frac{4}{5}
Reduce the fraction \frac{12}{15} to lowest terms by extracting and canceling out 3.
y=\frac{\frac{4}{5}}{\frac{4}{15}}
Divide both sides by \frac{4}{15}.
y=\frac{4}{5\times \frac{4}{15}}
Express \frac{\frac{4}{5}}{\frac{4}{15}} as a single fraction.
y=\frac{4}{\frac{4}{3}}
Multiply 5 and \frac{4}{15} to get \frac{4}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}