Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{8\left(4+\sqrt{6}\right)}{\left(4-\sqrt{6}\right)\left(4+\sqrt{6}\right)}
Rationalize the denominator of \frac{8}{4-\sqrt{6}} by multiplying numerator and denominator by 4+\sqrt{6}.
\frac{8\left(4+\sqrt{6}\right)}{4^{2}-\left(\sqrt{6}\right)^{2}}
Consider \left(4-\sqrt{6}\right)\left(4+\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{8\left(4+\sqrt{6}\right)}{16-6}
Square 4. Square \sqrt{6}.
\frac{8\left(4+\sqrt{6}\right)}{10}
Subtract 6 from 16 to get 10.
\frac{4}{5}\left(4+\sqrt{6}\right)
Divide 8\left(4+\sqrt{6}\right) by 10 to get \frac{4}{5}\left(4+\sqrt{6}\right).
\frac{4}{5}\times 4+\frac{4}{5}\sqrt{6}
Use the distributive property to multiply \frac{4}{5} by 4+\sqrt{6}.
\frac{4\times 4}{5}+\frac{4}{5}\sqrt{6}
Express \frac{4}{5}\times 4 as a single fraction.
\frac{16}{5}+\frac{4}{5}\sqrt{6}
Multiply 4 and 4 to get 16.