Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{8}{3}\sqrt{3}+\frac{x\sqrt{3}}{\left(\sqrt{3}\right)^{2}}=x
Rationalize the denominator of \frac{x}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{8}{3}\sqrt{3}+\frac{x\sqrt{3}}{3}=x
The square of \sqrt{3} is 3.
\frac{8}{3}\sqrt{3}+\frac{x\sqrt{3}}{3}-x=0
Subtract x from both sides.
\frac{x\sqrt{3}}{3}-x=-\frac{8}{3}\sqrt{3}
Subtract \frac{8}{3}\sqrt{3} from both sides. Anything subtracted from zero gives its negation.
x\sqrt{3}-3x=-8\sqrt{3}
Multiply both sides of the equation by 3.
\left(\sqrt{3}-3\right)x=-8\sqrt{3}
Combine all terms containing x.
\frac{\left(\sqrt{3}-3\right)x}{\sqrt{3}-3}=-\frac{8\sqrt{3}}{\sqrt{3}-3}
Divide both sides by \sqrt{3}-3.
x=-\frac{8\sqrt{3}}{\sqrt{3}-3}
Dividing by \sqrt{3}-3 undoes the multiplication by \sqrt{3}-3.
x=4\sqrt{3}+4
Divide -8\sqrt{3} by \sqrt{3}-3.