Solve for x
x = \frac{32}{9} = 3\frac{5}{9} \approx 3.555555556
Graph
Share
Copied to clipboard
\left(x-8\right)\times 8=-10x
Variable x cannot be equal to 8 since division by zero is not defined. Multiply both sides of the equation by 10\left(x-8\right), the least common multiple of 10,8-x.
8x-64=-10x
Use the distributive property to multiply x-8 by 8.
8x-64+10x=0
Add 10x to both sides.
18x-64=0
Combine 8x and 10x to get 18x.
18x=64
Add 64 to both sides. Anything plus zero gives itself.
x=\frac{64}{18}
Divide both sides by 18.
x=\frac{32}{9}
Reduce the fraction \frac{64}{18} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}