Evaluate
\frac{94}{15}\approx 6.266666667
Factor
\frac{2 \cdot 47}{3 \cdot 5} = 6\frac{4}{15} = 6.266666666666667
Share
Copied to clipboard
\frac{8\left(\frac{5}{4}+\frac{8}{3}\right)}{5}
Divide 8 by \frac{5}{\frac{5}{4}+\frac{8}{3}} by multiplying 8 by the reciprocal of \frac{5}{\frac{5}{4}+\frac{8}{3}}.
\frac{8\left(\frac{15}{12}+\frac{32}{12}\right)}{5}
Least common multiple of 4 and 3 is 12. Convert \frac{5}{4} and \frac{8}{3} to fractions with denominator 12.
\frac{8\times \frac{15+32}{12}}{5}
Since \frac{15}{12} and \frac{32}{12} have the same denominator, add them by adding their numerators.
\frac{8\times \frac{47}{12}}{5}
Add 15 and 32 to get 47.
\frac{\frac{8\times 47}{12}}{5}
Express 8\times \frac{47}{12} as a single fraction.
\frac{\frac{376}{12}}{5}
Multiply 8 and 47 to get 376.
\frac{\frac{94}{3}}{5}
Reduce the fraction \frac{376}{12} to lowest terms by extracting and canceling out 4.
\frac{94}{3\times 5}
Express \frac{\frac{94}{3}}{5} as a single fraction.
\frac{94}{15}
Multiply 3 and 5 to get 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}