Solve for x
x = -\frac{14}{13} = -1\frac{1}{13} \approx -1.076923077
Graph
Share
Copied to clipboard
3\left(7x+6\right)=4\left(2x+1\right)
Variable x cannot be equal to -\frac{1}{2} since division by zero is not defined. Multiply both sides of the equation by 6\left(2x+1\right), the least common multiple of 4x+2,3.
21x+18=4\left(2x+1\right)
Use the distributive property to multiply 3 by 7x+6.
21x+18=8x+4
Use the distributive property to multiply 4 by 2x+1.
21x+18-8x=4
Subtract 8x from both sides.
13x+18=4
Combine 21x and -8x to get 13x.
13x=4-18
Subtract 18 from both sides.
13x=-14
Subtract 18 from 4 to get -14.
x=\frac{-14}{13}
Divide both sides by 13.
x=-\frac{14}{13}
Fraction \frac{-14}{13} can be rewritten as -\frac{14}{13} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}